

repytah

repytah is a Python package that builds aligned hierarchies, a representation for
sequential data streams.

Citing repytah

Please cite repytah using the following:

	Jia et al., repytah: A Python package that builds aligned hierarchies for sequential data streams. Python package version 0.1.1, 2023. [Online]. Available: https://github.com/smith-tinkerlab/repytah.

Getting Started

	Why repytah

	Installing from conda package-manager or from pip

	Install from pip or conda

Modules

	Utilities

	Transform

	Assemble

	Search

Implementation

	Function Pipeline

	A Quick Start to Use the Package repytah

	Example of Creating Aligned Hierarchies for a Mazurka Score

References

	Changelog

	Index

Why repytah

Sequential data streams often have repeated elements that build on each other, creating hierarchies.
Therefore, the goal of the Python package repytah is to extract these repetitions and their relationships
to each other in order to form aligned hierarchies, a low-dimensional representation for sequential data
that synthesizes and aligns all possible hierarchies of the meaningful repetitive structure in a sequential data stream
along a common time axis.

An example of sequential data streams is music-based data streams, such as songs. In addition to
visualizing the structure of a song, aligned hierarchies can be embedded into a classification space with a
natural notion of distance and post-processed to narrow the exploration of a music-based data stream to certain
lengths of structure, or to address numerous MIR tasks, including the cover song task, the segmentation task,
and the chorus detection task.

For future work, based on the aligned hierarchies, we can build aligned sub-hierarchies. Aligned sub-hierarchies
are a collection of individual aligned hierarchies for each repeated pattern in a given sequential
data. With aligned sub-hierarchies, we can better deal with tasks that require a degree of flexibility. For
example, we can implement the aligned sub-hierarchies to find all versions of the same piece of music based
on a given version of the recording, which might involve different expressions including the number of
repeats.

Installing from conda package-manager or from pip

Anaconda

The safest way to install repytah is through conda.
In terminal, navigate to the directory that contains environment.yml and execute:

conda env create -f environment.yml
conda activate repytahenv
conda install -c conda-forge repytah

PyPI

In terminal, navigate to the directory that contains requirements.txt and execute the following command:

pip install -r requirements.txt
pip install repytah

Warning: Might encounter problems if Python version is not >= 3.7, <3.11.

Install from pip or conda

PyPI

The latest stable release is available on PyPI, and you can install it by running:

pip install repytah

Anaconda

If you use Anaconda, you can install the package using conda-forge:

conda install -c conda-forge repytah

Source

To build repytah from source, you need to first clone the repo using git clone git@github.com:smith-tinkerlab/repytah.git. Then build with python setup.py build. Then, to install repytah, say python setup.py install.

Alternatively, you can download or clone the repository and use pip to handle dependencies:

unzip repytah.zip
pip install -e repytah

or:

git clone https://github.com/smith-tinkerlab/repytah.git
pip install -e repytah-main

By calling pip list you should see repytah now as an installed package:

repytah (0.x.x, /path/to/repytah)

Utilities

utilities.py

This module, when imported, allows search.py, transform.py and assemble.py
in the repytah package to run smoothly.

The module contains the following functions:

	
	create_sdm
	Creates a self-dissimilarity matrix; this matrix is found
by creating audio shingles from feature vectors, and finding cosine
distance between shingles.

	
	find_initial_repeats
	Finds all diagonals present in thresh_mat, removing each diagonal
as it is found.

	
	stretch_diags
	Fills out diagonals in binary self-dissimilarity matrix from diagonal
starts and lengths.

	
	add_annotations
	Adds annotations to each pair of repeated structures according to
their length and order of occurrence.

	
	__find_song_pattern
	Stitches information about repeat locations from thresh_diags matrix
into a single row.

	
	reconstruct_full_block
	Creates a record of when pairs of repeated structures occur, from
the first beat in the song to the last beat of the song. Pairs of
repeated structures are marked with 1’s.

	
	get_annotation_lst
	Gets one annotation marker vector, given vector of lengths key_lst.

	
	get_y_labels
	Generates the labels for visualization.

	
	reformat [Only used for creating test examples]
	Transforms a binary matrix representation of when repeats occur in
a song into a list of repeated structures detailing the length and
occurrence of each repeat.

	
repytah.utilities.create_sdm(fv_mat, num_fv_per_shingle)

	Creates self-dissimilarity matrix; this matrix is found by creating audio
shingles from feature vectors, and finding the cosine distance between
shingles.

	Parameters

	
	fv_mat (np.ndarray) – Matrix of feature vectors where each column is a time step and each
row includes feature information i.e. an array of 144 columns/beats
and 12 rows corresponding to chroma values.

	num_fv_per_shingle (int) – Number of feature vectors per audio shingle.

	Returns

	Self-dissimilarity matrix with paired cosine distances between
shingles.

	Return type

	self_dissim_mat (np.ndarray)

	
repytah.utilities.find_initial_repeats(thresh_mat, bandwidth_vec, thresh_bw)

	Looks for the largest repeated structures in thresh_mat. Finds all
repeated structures, represented as diagonals present in thresh_mat,
and then stores them with their start/end indices and lengths in a
list. As each diagonal is found, they are removed to avoid identifying
repeated sub-structures.

	Parameters

	
	thresh_mat (np.ndarray[int]) – Thresholded matrix that we extract diagonals from.

	bandwidth_vec (np.ndarray[1D,int]) – Array of lengths of diagonals to be found. Should be
1, 2, 3,…, n where n is the number of timesteps.

	thresh_bw (int) – One less than smallest allowed repeat length.

	Returns

	List of pairs of repeats that correspond to diagonals in
thresh_mat.

	Return type

	all_lst (np.ndarray[int])

	
repytah.utilities.stretch_diags(thresh_diags, band_width)

	Creates a binary matrix with full length diagonals from a binary matrix of
diagonal starts and length of diagonals.

	Parameters

	
	thresh_diags (np.ndarray) – Binary matrix where entries equal to 1 signals the existence
of a diagonal.

	band_width (int) – Length of encoded diagonals.

	Returns

	Logical matrix with diagonals of length band_width starting
at each entry prescribed in thresh_diag.

	Return type

	stretch_diag_mat (np.ndarray[bool])

	
repytah.utilities.add_annotations(input_mat, song_length)

	Adds annotations to the pairs of repeats in input_mat.

	Parameters

	
	input_mat (np.ndarray) – List of pairs of repeats. The first two columns refer to the first
repeat of the pair. The third and fourth columns refer to the
second repeat of the pair. The fifth column refers to the repeat
lengths. The sixth column contains any previous annotations, which
will be removed.

	song_length (int) – Number of audio shingles in the song.

	Returns

	List of pairs of repeats with annotations marked.

	Return type

	anno_list (np.ndarray)

	
repytah.utilities.__find_song_pattern(thresh_diags)

	Stitches information from thresh_diags matrix into a single
row, song_pattern, that shows the time steps containing repeats;
From the full matrix that decodes repeat beginnings (thresh_diags),
the locations, or beats, where these repeats start are found and
encoded into the song_pattern array.

	Parameters

	thresh_diags (np.ndarray) – Binary matrix with 1 at the start of each repeat pair (SI,SJ)
and 0 elsewhere.
WARNING: Must be symmetric.

	Returns

	Row where each entry represents a time step and the group that
time step is a member of.

	Return type

	song_pattern (np.ndarray)

	
repytah.utilities.reconstruct_full_block(pattern_mat, pattern_key)

	Creates a record of when pairs of repeated structures occur, from the
first beat in the song to the end. This record is a binary matrix with a
block of 1’s for each repeat encoded in pattern_mat whose length is
encoded in pattern_key.

	Parameters

	
	pattern_mat (np.ndarray) – Binary matrix with 1’s where repeats begin and 0’s otherwise.

	pattern_key (np.ndarray) – Vector containing the lengths of the repeats encoded in
each row of pattern_mat.

	Returns

	Binary matrix representation for pattern_mat with blocks
of 1’s equal to the length’s prescribed in pattern_key.

	Return type

	pattern_block (np.ndarray)

	
repytah.utilities.get_annotation_lst(key_lst)

	Creates one annotation marker vector, given vector of lengths key_lst.

	Parameters

	key_lst (np.ndarray[int]) – Array of lengths in ascending order.

	Returns

	Array of one possible set of annotation markers for key_lst.

	Return type

	anno_lst_out (np.ndarray[int])

	
repytah.utilities.get_y_labels(width_vec, anno_vec)

	Generates the labels for visualization with width_vec and anno_vec.

	Parameters

	
	width_vec (np.ndarray[int]) – Vector of widths for a visualization.

	anno_vec (np.ndarray[int]) – Array of annotations for a visualization.

	Returns

	Labels for the y-axis of a visualization. Each label contains the
width and annotation number of an essential structure component.

	Return type

	y_labels (np.ndarray[str])

	
repytah.utilities.reformat(pattern_mat, pattern_key)

	Transforms a binary array with 1’s where repeats start and 0’s
otherwise into a list of repeated structures. This list consists of
information about the repeats including length, when they occur and when
they end.

Every row has a pair of repeated structure. The first two columns are
the time steps of when the first repeat of a repeated structure start and
end. Similarly, the second two columns are the time steps of when the
second repeat of a repeated structure start and end. The fifth column is
the length of the repeated structure.

Reformat is not used in the main process for creating the
aligned hierarchies. It is helpful when writing example inputs for
the tests.

	Parameters

	
	pattern_mat (np.ndarray) – Binary array with 1’s where repeats start and 0’s otherwise.

	pattern_key (np.ndarray) – Array with the lengths of each repeated structure in pattern_mat.

	Returns

	Array with the time steps of when the pairs of repeated structures
start and end organized.

	Return type

	info_mat (np.ndarray)

Transform

transform.py

This module contains functions that transform matrix inputs into different
forms that are of use in bigger functions where they are called.
These functions focus mainly on overlapping repeated structures and
annotation markers.

	The module contains the following functions:
	
	
	remove_overlaps
	Removes any pairs of repeats with the same length and annotation marker
where at least one pair of repeats overlap in time.

	
	__create_anno_remove_overlaps
	Turns rows of repeats into marked rows with annotation markers for the
start indices and zeroes otherwise. After removing the annotations that
have overlaps, the function creates separate arrays for annotations
with overlaps and annotations without overlaps. Finally, the annotation
markers are checked and fixed if necessary.

	
	__separate_anno_markers
	Expands vector of non-overlapping repeats into a matrix representation.
The matrix representation is a visual record of where all of the
repeats in a song start and end.

	
repytah.transform.remove_overlaps(input_mat, song_length)

	Removes any pairs of repeat length and specific annotation marker
where there exists at least one pair of repeats that overlap in time.

	Parameters

	
	input_mat (np.ndarray[int]) – List of pairs of repeats with annotations marked. The first two
columns refer to the first repeat or the pair, the second two refer
to the second repeat of the pair, the fifth column refers to the
length of the repeats, and the sixth column contains the annotation
markers.

	song_length (int) – Number of audio shingles.

	Returns

	A tuple (lst_no_overlaps, matrix_no_overlaps, key_no_overlaps,
annotations_no_overlaps, all_overlap_lst). All variables have data type
np.ndarray[int].

lst_no_overlaps is a list of pairs of repeats with
annotations marked where all the repeats of a given length and with a
specific annotation marker do not overlap in time.

matrix_no_overlaps is a matrix representation of lst_no_overlaps with
one row for each group of repeats.

key_no_overlaps is a vector containing the lengths of the repeats
encoded in each row of matrix_no_overlaps.

annotations_no_overlaps is a vector containing the annotation markers of
the repeats encoded in each row of matrix_no_overlaps.

all_overlap_lst is a list of pairs of repeats where for each pair of
repeat length and specific annotation marker, there exists at least one
pair of repeats that do overlap in time.

	
repytah.transform.__create_anno_remove_overlaps(k_mat, song_length, band_width)

	Turns k_mat into marked rows with annotation markers for the start
indices and zeroes otherwise. After removing the annotations that have
overlaps, the function outputs k_lst_out which only contains rows that
have no overlaps, then takes the annotations that have overlaps from
k_lst_out and puts them in overlap_lst. Lastly, it checks if the proper
sequence of annotation markers was given and fix them if necessary.

	Parameters

	
	k_mat (np.ndarray) – List of pairs of repeats of length 1 with annotations marked.
The first two columns refer to the first repeat of the pair,
the second two refer to the second repeat of the pair, the fifth
column refers to the length of the repeats, and the sixth column
contains the annotation markers.

	song_length (int) – Number of audio shingles.

	band_width (int) – Length of repeats encoded in k_mat.

	Returns

	A tuple (pattern_row, k_lst_out, overlap_lst) where all variables have
data type np.ndarray.

pattern_row marks where non-overlapping repeats occur, marking start
indices with annotation markers and 0’s otherwise.

k_lst_out is a list of pairs of repeats of length band_width that
contain no overlapping repeats with annotations marked.

overlap_lst is a list of pairs of repeats of length band_width that
contain overlapping repeats with annotations marked.

	
repytah.transform.__separate_anno_markers(k_mat, song_length, band_width, pattern_row)

	Expands pattern_row, a row vector that marks where non-overlapping
repeats occur, into a matrix representation or np.array. The dimension of
this array is twice the pairs of repeats by song_length. k_mat provides
a list of annotation markers that is used in separating the repeats of
length band_width into individual rows. Each row will mark the start and
end time steps of a repeat with 1’s and 0’s otherwise. The array is a
visual record of where all of the repeats in a song start and end.

	Parameters

	
	k_mat (np.ndarray) – List of pairs of repeats of length band_width with annotations
marked. The first two columns refer to the start and end time
steps of the first repeat of the pair, the second two refer to
the start and end time steps of second repeat of the pair, the
fifth column refers to the length of the repeats, and the sixth
column contains the annotation markers. We will be indexing into
the sixth column to obtain a list of annotation markers.

	song_length (int) – Number of audio shingles.

	band_width (int) – Length of repeats encoded in k_mat.

	pattern_row (np.ndarray) – Row vector of the length of the song that marks where
non-overlapping repeats occur with the repeats’ corresponding
annotation markers and 0’s otherwise.

	Returns

	A tuple (pattern_mat, pattern_key, anno_id_lst) where all variables have
data type np.ndarray.

pattern_mat is a matrix representation where each row contains a group
of repeats marked.

pattern_key is a column vector containing the lengths of the repeats
encoded in each row of pattern_mat.

anno_id_lst is a column vector containing the annotation markers of the
repeats encoded in each row of pattern_mat.

Assemble

assemble.py

This module finds and forms essential structure components, which are the
smallest building blocks that form every repeat in the song.

These functions ensure that each time step of a song is contained in at most
one of the song’s essential structure components by checking that there are no
overlapping repeats in time. When repeats overlap, they undergo a process
where they are divided until there are only non-overlapping pieces left.

The module contains the following functions:

	
	breakup_overlaps_by_intersect
	Extracts repeats in input_pattern_obj that has the starting indices
of the repeats, into the essential structure components using bw_vec,
that has the lengths of each repeat.

	
	check_overlaps
	Compares every pair of groups, determining if there are any repeats
in any pairs of the groups that overlap.

	
	__compare_and_cut
	Compares two rows of repeats labeled RED and BLUE, and determines if
there are any overlaps in time between them. If there are overlaps,
we cut the repeats in RED and BLUE into up to 3 pieces.

	
	__num_of_parts
	Determines the number of blocks of consecutive time steps in a list
of time steps. A block of consecutive time steps represents a
distilled section of a repeat.

	
	__inds_to_rows
	Expands a vector containing the starting indices of a piece or two
of a repeat into a matrix representation recording when these pieces
occur in the song with 1’s. All remaining entries are marked with
0’s.

	
	__merge_based_on_length
	Merges repeats that are the same length, as set by full_bandwidth,
and are repeats of the same piece of structure.

	
	__merge_rows
	Merges rows that have at least one common repeat. These common
repeat(s) must occur at the same time step and be of a common length.

	
	hierarchical_structure
	Distills the repeats encoded in matrix_no_overlaps (and key_no_overlaps)
to the essential structure components and then builds the hierarchical
representation. Optionally outputs visualizations of the hierarchical
representations.

	
repytah.assemble.breakup_overlaps_by_intersect(input_pattern_obj, bw_vec, thresh_bw)

	Extracts repeats in input_pattern_obj that has the starting indices of the
repeats, into the essential structure components using bw_vec, that has the
lengths of each repeat. The essential structure components are the
smallest building blocks that form every repeat in the song.

	Parameters

	
	input_pattern_obj (np.ndarray) – Binary matrix with 1’s where repeats begin and 0’s otherwise.

	bw_vec (np.ndarray) – Vector containing the lengths of the repeats encoded in
input_pattern_obj.

	thresh_bw (int) – One less than the smallest allowable repeat length.

	Returns

	A tuple (pattern_no_overlaps, pattern_no_overlaps_key) where all
variables have data type np.ndarray.

pattern_no_overlaps is a binary matrix with 1’s where repeats
of essential structure components begin.

pattern_no_overlaps_key is a vector containing the lengths of the
repeats of essential structure components in pattern_no_overlaps.

	
repytah.assemble.check_overlaps(input_mat)

	Compares every pair of repeat groups and determines if there are any repeats
in any pairs of the groups that overlap.

	Parameters

	input_mat (np.ndarray) – Binary matrix with blocks of 1’s equal to the length of repeats
to be checked for overlaps.

	Returns

	Logical array where (i,j) = 1 if row i of input_mat and row j
of input_mat overlap and (i,j) = 0 elsewhere.

	Return type

	overlap_mat (np.ndarray)

	
repytah.assemble.__compare_and_cut(red, red_len, blue, blue_len)

	Compares two rows of repeats labeled RED and BLUE, and determines if there
are any overlaps in time between them. If there is, then we cut the
repeats in RED and BLUE into up to 3 pieces.

	Parameters

	
	red (np.ndarray) – Binary row vector encoding a set of repeats with 1’s where each
repeat starts and 0’s otherwise.

	red_len (np.ndarray) – Length of repeats encoded in red.

	blue (np.ndarray) – Binary row vector encoding a set of repeats with 1’s where each
repeat starts and 0’s otherwise.

	blue_len (np.ndarray) – Length of repeats encoded in blue.

	Returns

	A tuple (union_mat, union_length) where all variables have data type
np.ndarray.

union_mat is a binary matrix representation of up to three rows encoding
non-overlapping repeats cut from red and blue.

union_length is a vector containing the lengths of the repeats encoded
in union_mat.

	
repytah.assemble.__num_of_parts(input_vec, input_start, input_all_starts)

	Determines the number of blocks of consecutive time steps in a list of
time steps. A block of consecutive time steps represents a distilled
section of a repeat. This distilled section will be replicated and the
starting indices of the repeats within it will be returned.

	Parameters

	
	input_vec (np.ndarray) – Vector that contains one or two parts of a repeat that are
overlap(s) in time that may need to be replicated.

	input_start (np.ndarray) – Starting index for the part to be replicated.

	input_all_starts (np.ndarray) – Starting indices for replication.

	Returns

	A tuple (start_mat, length_vec) where all variables have data type
np.ndarray.

start_mat is an array of one or two rows containing the starting indices
of the replicated repeats.

length_vec is a column vector containing the lengths of the replicated
parts.

	
repytah.assemble.__inds_to_rows(start_mat, row_length)

	Expands a vector containing the starting indices of a piece or two of a
repeat into a matrix representation recording when these pieces occur in
the song with 1’s. All remaining entries are marked with 0’s.

	Parameters

	
	start_mat (np.ndarray) – Matrix of one or two rows, containing the starting indices.

	row_length (int) – Length of the rows.

	Returns

	Binary matrix of one or two rows, with 1’s where the starting
indices and 0’s otherwise.

	Return type

	new_mat (np.ndarray)

	
repytah.assemble.__merge_based_on_length(full_mat, full_bw, target_bw)

	Merges repeats that are the same length, as set by full_bw,
and are repeats of the same piece of structure.

	Parameters

	
	full_mat (np.ndarray) – Binary matrix with ones where repeats start and zeroes otherwise.

	full_bw (np.ndarray) – Length of repeats encoded in input_mat.

	target_bw (np.ndarray) – Lengths of repeats that we seek to merge.

	Returns

	A tuple (out_mat, one_length_vec) where all variables have data type
np.ndarray.

out_mat is a binary matrix with 1’s where repeats start and 0’s
otherwise with rows of full_mat merged if appropriate.

one_length_vec is a vector that contains the length of repeats encoded
in out_mat.

	
repytah.assemble.__merge_rows(input_mat, input_width)

	Merges rows that have at least one common repeat; said common repeat(s)
must occur at the same time step and be of common length.

	Parameters

	
	input_mat (np.ndarray) – Binary matrix with ones where repeats start and zeroes otherwise.

	input_width (int) – Length of repeats encoded in input_mat.

	Returns

	Binary matrix with ones where repeats start and zeroes otherwise.

	Return type

	merge_mat (np.ndarray)

	
repytah.assemble.hierarchical_structure(matrix_no_overlaps, key_no_overlaps, sn, vis=False)

	Distills the repeats encoded in matrix_no_overlaps (and key_no_overlaps)
to the essential structure components and then builds the hierarchical
representation. Optionally shows visualizations of the hierarchical
structure via the vis argument.

	Parameters

	
	matrix_no_overlaps (np.ndarray) – Binary matrix with 1’s where repeats begin and 0’s otherwise.

	key_no_overlaps (np.ndarray) – Vector containing the lengths of the repeats encoded
in matrix_no_overlaps.

	sn (int) –

	length (Song) –

	shingles. (which is the number of audio) –

	vis (bool) – Shows visualizations if True (default = False).

	Returns

	A tuple (full_visualization, full_key, full_matrix_no_overlaps,
full_anno_lst) where all variables have data type np.ndarray.

full_visualization is a binary matrix representation for
full_matrix_no_overlaps with blocks of 1’s equal to the lengths
prescribed in full_key.

full_key is a vector containing the lengths of the hierarchical
structure encoded in full_matrix_no_overlaps.

full_matrix_no_overlaps is a binary matrix with 1’s where hierarchical
structure begins and 0’s otherwise.

full_anno_lst is a vector containing the annotation markers of the
hierarchical structure encoded in each row of full_matrix_no_overlaps.

Search

search.py

This module holds functions used to find and record the diagonals in the
thresholded matrix, T. These functions prepare the diagonals found for
transformation and assembling later.
The module contains the following functions:

	
	find_complete_list
	Finds all smaller diagonals (and the associated pairs of repeats)
that are contained in pair_list, which is composed of larger diagonals
found in find_initial_repeats.

	
	__find_add_rows
	Finds pairs of repeated structures, represented as diagonals of a
certain length, k, that neither start nor end at the same time steps
as previously found pairs of repeated structures of the same length.

	
	find_all_repeats
	Finds all the diagonals present in thresh_mat. This function is nearly
identical to find_initial_repeats except for two crucial differences.
First, we do not remove diagonals after we find them. Second, there is
no smallest bandwidth size as we are looking for all diagonals.

	
	find_complete_list_anno_only
	Finds annotations for all pairs of repeats found in find_all_repeats.
This list contains all the pairs of repeated structures with their
starting/ending indices and lengths.

	
repytah.search.find_complete_list(pair_list, song_length)

	Finds all smaller diagonals (and the associated pairs of repeats) that are
contained in pair_list, which is composed of larger diagonals found in
find_initial_repeats.

	Parameters

	
	pair_list (np.ndarray) – List of pairs of repeats found in earlier steps
(bandwidths MUST be in ascending order). If you have run
find_initial_repeats before this script, then pair_list will be
ordered correctly.

	song_length (int) – Song length, which is the number of audio shingles.

	Returns

	List of pairs of repeats with smaller repeats added.

	Return type

	final_lst (np.ndarray)

	
repytah.search.__find_add_rows(lst_no_anno, check_inds, k)

	Finds pairs of repeated structures, represented as diagonals of a certain
length, k, that that start at the same time step, or end at the same time
step, or neither start nor end at the same time step as previously found
pairs of repeated structures of the same length.

	Parameters

	
	lst_no_anno (np.ndarray) – List of pairs of repeats.

	check_inds (np.ndarray) – List of starting indices for repeats of length k that we use to
check lst_no_anno for more repeats of length k.

	k (int) – Length of repeats that we are looking for.

	Returns

	List of newly found pairs of repeats of length K that are
contained in larger repeats in lst_no_anno.

	Return type

	add_rows (np.ndarray)

	
repytah.search.find_all_repeats(thresh_mat, bw_vec)

	Finds all the diagonals present in thresh_mat. This function is nearly
identical to find_initial_repeats, with two crucial differences.
First, we do not remove diagonals after we find them. Second,
there is no smallest bandwidth size as we are looking for all diagonals.

	Parameters

	
	thresh_mat (np.ndarray) – Thresholded matrix that we extract diagonals from.

	bw_vec (np.ndarray) – Vector of lengths of diagonals to be found.
Should be 1, 2, 3, …, n where n = number of timesteps.

	Returns

	Pairs of repeats that correspond to diagonals in thresh_mat.

	Return type

	all_lst (np.ndarray)

	
repytah.search.find_complete_list_anno_only(pair_list, song_length)

	Finds annotations for all pairs of repeats found in find_all_repeats.
This list contains all the pairs of repeated structures with their
starting/ending indices and lengths.

	Parameters

	
	pair_list (np.ndarray) – List of pairs of repeats.
WARNING: Bandwidths must be in ascending order.

	song_length (int) – Number of audio shingles in song.

	Returns

	List of pairs of repeats with smaller repeats added and with
annotation markers.

	Return type

	out_lst (np.ndarray)

Function Pipeline

Before we dive deep into the implementation of the package via the walk-through of a complete example,
a function pipeline is shown below to illustrate the function calls in each step. For an in-depth look
at each function, check the corresponding Jupyter Notebooks for each module.

	Yellow: Utilities [https://github.com/smith-tinkerlab/repytah/blob/main/docs/utilities_vignette.ipynb]

	Purple Search [https://github.com/smith-tinkerlab/repytah/blob/main/docs/search_vignette.ipynb]

	Green: Transform [https://github.com/smith-tinkerlab/repytah/blob/main/docs/transform_vignette.ipynb]

	Red: Assemble [https://github.com/smith-tinkerlab/repytah/blob/main/docs/assemble_vignette.ipynb]

[image: _images/function_pipeline.jpg]

A Quick Start to Use the Package repytah

This notebook demonstrates how to use repytah to create aligned hierarchies for a music-based data stream. Before diving into the details, we’ll walk through a brief example program.

The example input is a csv file containing Chroma feature vectors for each beat of Chopin’s Mazurka Op.30, No.1.

[1]:

Standard imports
import scipy.io as sio
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Import the package repytah
from repytah import *

Make the images clear
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

To skip visualizing the middle steps and get the output directly, try the following code:

[2]:

file_in = load_ex_data('../repytah/data/mazurka30-1.csv').to_numpy()
file_out = "hierarchical_out_file.mat"
num_fv_per_shingle = 12
thresh = 0.02
csv_to_aligned_hierarchies(file_in, file_out, num_fv_per_shingle, thresh, True)

[image: _images/quick_start_5_0.png]

[image: _images/quick_start_5_1.png]

[image: _images/quick_start_5_2.png]

[image: _images/quick_start_5_3.png]

[image: _images/quick_start_5_4.png]

To visualize the middle steps, try the following code:

Load the input file and modify the music based data to a matrix representation:

[4]:

Load the input file
file_in = load_ex_data('../repytah/data/mazurka30-1.csv').to_numpy()
fv_mat = file_in

Number of feature vectors per shingle
num_fv_per_shingle = 12

Create the self-dissimilarity matrix
self_dissim_mat = create_sdm(fv_mat, num_fv_per_shingle)

Produce a visualization
SDM = plt.imshow(self_dissim_mat, cmap="RdBu")
plt.title('Self-Dissimilarity Matrix')
plt.show()

[image: _images/quick_start_8_0.png]

Threshold the above matrix:

[12]:

song_length = self_dissim_mat.shape[0]
thresh = 0.02

Threshold the SDM to produce a binary matrix
thresh_dist_mat = (self_dissim_mat <= thresh)

Produce a visualization
SDM = plt.imshow(thresh_dist_mat, cmap="Greys")
plt.title('Thresholded Matrix')
plt.show()

[image: _images/quick_start_10_0.png]

Find and group each pair of repeats:

[13]:

all_lst = find_initial_repeats(thresh_dist_mat, np.arange(1, song_length + 1), 0)
complete_lst = find_complete_list(all_lst, song_length)
mat_no_overlaps, key_no_overlaps = remove_overlaps(complete_lst, song_length)[1:3]

Find the essential structure components of the song and build the aligned hierarchies:

[14]:

output_tuple = hierarchical_structure(mat_no_overlaps, key_no_overlaps, song_length, vis=True)

[image: _images/quick_start_14_0.png]

[image: _images/quick_start_14_1.png]

[image: _images/quick_start_14_2.png]

[image: _images/quick_start_14_3.png]

[image: _images/quick_start_14_4.png]

To visualize the repeated structures in the actual music score, the examples in color yellow and purple are shown: [image: 48b7dd4525f04a37b53499a8761afceb] [image: 51316821af944d5ab6ba82c7c6bb42f7] [image: 0ca90eeb7ca54da08acae32ad8d16340]

This notebook is just a quick walk-through that demonstrates how to use the package repytah, more technical details are in the `example <https://github.com/smith-tinkerlab/repytah/blob/main/docs/example_vignette.ipynb>`__ notebook.

Example of Creating Aligned Hierarchies for a Mazurka Score

In this example, we will walk through the elements of the repytah package that pertain to the creation of aligned hierarchies for a music-based data stream (eg. a song).

Beginning with features (such as MFCCs and chroma features) for each timestep in your music-based data stream, there are several steps to this process:

	Create the self-dissimilarity matrix (SDM).

	Highlight pairs of timesteps that are close enough to be considered as repetitions of each other. (In other words, threshold the SDM)

	Find pairs of structure repetitions (represented as diagonals within the thresholded SDM).

	Find any pairs of structure repetitions not found in step 2, and group the structure repetitions.

	Remove any repeated structures that have overlapped instances.

	Distill the collection of repeated structures into the essential structure components , i.e. the smallest meaningful repetitions on which all larger repeats are constructed. Each timestep will be contained in no more than one essential structure component

Note: The walk-through of this example is very similar to the code in example.py found in this package.

We begin by importing the necessary packages:

[1]:

NumPy and SciPy are required for mathematical operations
import scipy.io as sio
import numpy as np

Pandas is used to import the csv
import pandas as pd

Import all modules from repytah
from repytah import *

Matplotlib is used to display outputs
import matplotlib.pyplot as plt

Make the images clear
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

Hide code (optional)
import ipywidgets as widgets
from IPython.display import display, HTML
javascript_functions = {False: "hide()", True: "show()"}
button_descriptions = {False: "Show code", True: "Hide code"}
def toggle_code(state):
 output_string = "<script>$(\"div.input\").{}</script>"
 output_args = (javascript_functions[state],)
 output = output_string.format(*output_args)
 display(HTML(output))
def button_action(value):
 state = value.new
 toggle_code(state)
 value.owner.description = button_descriptions[state]
state = True
toggle_code(state)
button = widgets.ToggleButton(state, description = button_descriptions[state])
button.observe(button_action, "value")
display(button)

Step 0: Create the SDM

In this phase, there are a few crucial details, namely importing the data file that we would like to unearth hierarchical structural information for and determining the appropriate dissimilarity measure to use. If you already have (symmetrical) matrix representations for your data stream, then you may find it more appropriate to load your matrix and then skip ahead to Step 1 or Step 2.

This step assumes that your music-based data stream (ie. a recording or score) has already had your preferred features extracted (like chroma or MFCCs) and is arranged into columns such that each column represents a time step (or beat). We refer to this as a feature vector matrix as each feature vector is laid out as column within one cohesive matrix.

Importing data for structure analysis

Note: For this demonstration, we are using the load_ex_data() built-in function from the example module to load our data. To recreate our example, you could do the same. This is an optional task and the normal method of reading in a data file will work.

We are using Chopin’s Mazurka Op.6, No.1 as input for this demonstration.

[2]:

Import csv
file_in = load_ex_data('data/input.csv').to_numpy()

fv_mat = file_in

Creating the SDM

In just one line, we define the self-dissimilarity matrix. This function create_sdm, uses feature vectors to create an audio shingle for each time step and represents these shingles as vectors by stacking the relevant feature vectors on top of each other. Then, the cosine distance is found between these shingles.

[3]:

Number of feature vectors per shingle
num_fv_per_shingle = 12

Create the self-dissimilarity matrix
self_dissim_mat = create_sdm(fv_mat, num_fv_per_shingle)

print('self_dissim_mat:\n', self_dissim_mat)

Produce a visualization
SDM = plt.imshow(self_dissim_mat, cmap="RdBu")
plt.title('Self-Dissimilarity Matrix')
plt.show()

self_dissim_mat:
 [[0. 0.36468911 0.58429924 ... 0.57425539 0.77909953 0.82434591]
 [0.36468911 0. 0.41660702 ... 0.68829818 0.64039838 0.80480641]
 [0.58429924 0.41660702 0. ... 0.72072778 0.59670143 0.57191158]
 ...
 [0.57425539 0.68829818 0.72072778 ... 0. 0.60941866 0.70720396]
 [0.77909953 0.64039838 0.59670143 ... 0.60941866 0. 0.39416349]
 [0.82434591 0.80480641 0.57191158 ... 0.70720396 0.39416349 0.]]

[image: _images/example_vignette_6_1.png]

Step 1: Threshold the SDM

In this step, the self-dissimilarity matrix is thresholded to produce a binary matrix of the same dimensions. This matrix is used to identify repeated structures, which are represented by diagonals of the same length.

[4]:

song_length = self_dissim_mat.shape[0]
thresh = 0.02

Threshold the SDM to produce a binary matrix
thresh_dist_mat = (self_dissim_mat <= thresh)

print('thresh_dist_mat:\n', thresh_dist_mat)

Produce a visualization
SDM = plt.imshow(thresh_dist_mat, cmap="Greys")
plt.title('Thresholded Matrix')
plt.show()

thresh_dist_mat:
 [[True False False ... False False False]
 [False True False ... False False False]
 [False False True ... False False False]
 ...
 [False False False ... True False False]
 [False False False ... False True False]
 [False False False ... False False True]]

[image: _images/example_vignette_8_1.png]

Step 2: Find the diagonals present and store all pairs of repeats found in a list

The diagonals in the thresholded matrix are found and recorded in an array of repeats. find_initial_repeats does this by looking for the largest repeated structures in thresh_dist_mat, which are illustrated in the above Thresholded Matrix diagram. Once all repeated structures are found, which are represented as diagonals present in thresh_dist_mat, they are stored with their start/end indices and lengths in a list. As each diagonal is found, it is removed to avoid identifying
repeated sub-structures.

Below is the listing of the pairs of repeats found by find_initial_repeats:

[5]:

all_lst = find_initial_repeats(thresh_dist_mat, np.arange(1, song_length + 1), 0)

print('all_lst:\n', all_lst)

all_lst:
 [[2 2 26 26 1]
 [2 2 74 74 1]
 [2 2 146 146 1]
 [2 2 218 218 1]
 [2 2 314 314 1]
 [26 26 50 50 1]
 [50 50 74 74 1]
 [50 50 146 146 1]
 [50 50 218 218 1]
 [50 50 314 314 1]
 [247 250 271 274 4]
 [124 156 292 324 33]
 [196 228 292 324 33]
 [2 36 290 324 35]
 [50 84 290 324 35]
 [3 38 123 158 36]
 [51 86 195 230 36]
 [3 39 195 231 37]
 [1 38 49 86 38]
 [51 122 123 194 72]
 [87 158 159 230 72]
 [1 325 1 325 325]]

Let’s take moment to examine what we have and time it back to the original thresholded SDM. The first ten pairs listed in all_lst are repeats of length 1. We also note that the last “pair” of repeats is the whole score being matched to itself. For now, we set this “repeat” and the ones that are of length 1 aside.

In the image below, for each pair of repeats, we color one of the two diagonals associated to that pairing. The second one is the matching diagonal when flipped over the main diagonal.

For example, the red diagonal represents the pair of repeats that start at beats 124 and 292 and are 33 beats long, and the blue diagonal represents the pair of repeats that start at beat 51 and 123 and are 72 beats long.

[8]:

visualize_all_lst(thresh_dist_mat)

[image: _images/example_vignette_12_0.png]

Step 3: Find any diagonals in the thresholded matrix T that are contained in larger diagonals in T but not found in step 2, then group pairs of repeats

Any smaller diagonals that are contained in larger diagonals and are not found in step 2 are found and added to the array of repeats in this step. All possible repeat lengths are looped over in all_lst, and larger repeats containing smaller repeats are broken up into up to 3 sections each, the part before the overlap, the overlap, and the part after the overlap. With this, a more complete list of repeated structures is created.

[9]:

complete_lst = find_complete_list(all_lst, song_length)

print('complete_lst:\n', complete_lst)

complete_lst:
 [[1 1 49 49 1 1]
 [2 2 26 26 1 2]
 [2 2 50 50 1 2]
 [2 2 74 74 1 2]
 [2 2 146 146 1 2]
 [2 2 218 218 1 2]
 [2 2 290 290 1 2]
 [2 2 314 314 1 2]
 [26 26 50 50 1 2]
 [26 26 74 74 1 2]
 [26 26 146 146 1 2]
 [26 26 218 218 1 2]
 [26 26 314 314 1 2]
 [50 50 74 74 1 2]
 [50 50 146 146 1 2]
 [50 50 218 218 1 2]
 [50 50 290 290 1 2]
 [50 50 314 314 1 2]
 [74 74 146 146 1 2]
 [74 74 218 218 1 2]
 [74 74 314 314 1 2]
 [146 146 218 218 1 2]
 [146 146 314 314 1 2]
 [218 218 314 314 1 2]
 [3 3 123 123 1 3]
 [3 3 195 195 1 3]
 [51 51 123 123 1 3]
 [51 51 195 195 1 3]
 [39 39 231 231 1 4]
 [1 2 49 50 2 1]
 [2 3 290 291 2 2]
 [50 51 290 291 2 2]
 [37 38 85 86 2 3]
 [37 38 157 158 2 3]
 [85 86 229 230 2 3]
 [157 158 229 230 2 3]
 [37 39 229 231 3 1]
 [247 250 271 274 4 1]
 [27 36 315 324 10 1]
 [75 84 315 324 10 1]
 [147 156 315 324 10 1]
 [219 228 315 324 10 1]
 [27 38 75 86 12 1]
 [27 38 147 158 12 1]
 [75 86 219 230 12 1]
 [147 158 219 230 12 1]
 [27 39 219 231 13 1]
 [124 145 292 313 22 1]
 [196 217 292 313 22 1]
 [3 25 123 145 23 1]
 [3 25 195 217 23 1]
 [51 73 123 145 23 1]
 [51 73 195 217 23 1]
 [2 25 290 313 24 1]
 [50 73 290 313 24 1]
 [1 25 49 73 25 1]
 [4 36 124 156 33 1]
 [4 36 196 228 33 1]
 [4 36 292 324 33 1]
 [52 84 124 156 33 1]
 [52 84 196 228 33 1]
 [52 84 292 324 33 1]
 [124 156 196 228 33 1]
 [124 156 292 324 33 1]
 [196 228 292 324 33 1]
 [3 36 291 324 34 1]
 [51 84 291 324 34 1]
 [2 36 50 84 35 1]
 [2 36 290 324 35 1]
 [50 84 290 324 35 1]
 [3 38 51 86 36 1]
 [3 38 123 158 36 1]
 [3 38 195 230 36 1]
 [51 86 123 158 36 1]
 [51 86 195 230 36 1]
 [123 158 195 230 36 1]
 [87 122 159 194 36 2]
 [3 39 195 231 37 1]
 [87 123 159 195 37 2]
 [1 38 49 86 38 1]
 [85 122 157 194 38 2]
 [75 122 147 194 48 1]
 [87 145 159 217 59 1]
 [51 122 123 194 72 1]
 [87 158 159 230 72 2]]

It is clear that complete_list is much longer that all_lst, which makes sense because we are adding smaller pieces of the larger repeats, when an overlap in time has occurred between a smaller repeat and a larger one.

For example, the repeat of length 72 starting at beat 51 overlaps with the smaller repeat of length 48 starting at beat 75 (the purple section).

The image below visualizes the idea of distilling smaller parts from larger repeats in step 2 by showing some of the smaller repetitions found within the larger repeats.

[10]:

visualize_complete_lst(thresh_dist_mat)

[image: _images/example_vignette_16_0.png]

Step 4: Remove any repeated structure that has at least two repeats that overlap in time

In this step, repeated structures with the same annotation and length are removed if they are overlapping.

This is done by looping over all possible repeat lengths, finding all the groups of repeats of the same length. For each of those groups, remove_overlaps determines whether there exists any pair of repeats that overlaps in time. If a pair like that exists, all the overlapping repeats are removed.

Along with a list of all the repeats with no overlaps, this step also forms a matrix, a list of the associated lengths of the repeats in the matrix, the annotations of the repeats in the matrix, and a list of the overlaps. The matrix is a binary matrix that visualizes the repeats, representing the start of a repeat with a 1. This matrix, in combination with the list of the lengths of the repeats, can be used to visualize the repeats.

[11]:

output_tuple = remove_overlaps(complete_lst, song_length)

print('List with no overlaps:\n', output_tuple[0])
print('Matrix with no overlaps:\n', output_tuple[1])
print('Lengths of the repeats in the matrix:', output_tuple[2])
print('Annotations of the repeats in the matrix:', output_tuple[3])
print('List of overlaps:\n', output_tuple[4])

List with no overlaps:
 [[1 1 49 49 1 1]
 [2 2 26 26 1 2]
 [2 2 50 50 1 2]
 [2 2 74 74 1 2]
 [2 2 146 146 1 2]
 [2 2 218 218 1 2]
 [2 2 290 290 1 2]
 [2 2 314 314 1 2]
 [3 3 123 123 1 3]
 [3 3 195 195 1 3]
 [26 26 50 50 1 2]
 [26 26 74 74 1 2]
 [26 26 146 146 1 2]
 [26 26 218 218 1 2]
 [26 26 314 314 1 2]
 [39 39 231 231 1 4]
 [50 50 74 74 1 2]
 [50 50 146 146 1 2]
 [50 50 218 218 1 2]
 [50 50 290 290 1 2]
 [50 50 314 314 1 2]
 [51 51 123 123 1 3]
 [51 51 195 195 1 3]
 [74 74 146 146 1 2]
 [74 74 218 218 1 2]
 [74 74 314 314 1 2]
 [146 146 218 218 1 2]
 [146 146 314 314 1 2]
 [218 218 314 314 1 2]
 [1 2 49 50 2 1]
 [2 3 290 291 2 2]
 [37 38 85 86 2 3]
 [37 38 157 158 2 3]
 [50 51 290 291 2 2]
 [85 86 229 230 2 3]
 [157 158 229 230 2 3]
 [37 39 229 231 3 1]
 [247 250 271 274 4 1]
 [27 36 315 324 10 1]
 [75 84 315 324 10 1]
 [147 156 315 324 10 1]
 [219 228 315 324 10 1]
 [27 38 75 86 12 1]
 [27 38 147 158 12 1]
 [75 86 219 230 12 1]
 [147 158 219 230 12 1]
 [27 39 219 231 13 1]
 [124 145 292 313 22 1]
 [196 217 292 313 22 1]
 [3 25 123 145 23 1]
 [3 25 195 217 23 1]
 [51 73 123 145 23 1]
 [51 73 195 217 23 1]
 [2 25 290 313 24 1]
 [50 73 290 313 24 1]
 [1 25 49 73 25 1]
 [4 36 124 156 33 1]
 [4 36 196 228 33 1]
 [4 36 292 324 33 1]
 [52 84 124 156 33 1]
 [52 84 196 228 33 1]
 [52 84 292 324 33 1]
 [124 156 196 228 33 1]
 [124 156 292 324 33 1]
 [196 228 292 324 33 1]
 [3 36 291 324 34 1]
 [51 84 291 324 34 1]
 [2 36 50 84 35 1]
 [2 36 290 324 35 1]
 [50 84 290 324 35 1]
 [3 38 51 86 36 1]
 [3 38 123 158 36 1]
 [3 38 195 230 36 1]
 [51 86 123 158 36 1]
 [51 86 195 230 36 1]
 [87 122 159 194 36 2]
 [123 158 195 230 36 1]
 [3 39 195 231 37 1]
 [87 123 159 195 37 2]
 [1 38 49 86 38 1]
 [85 122 157 194 38 2]
 [75 122 147 194 48 1]
 [87 145 159 217 59 1]
 [51 122 123 194 72 1]
 [87 158 159 230 72 2]]
Matrix with no overlaps:
 [[1 0 0 ... 0 0 0]
 [0 1 0 ... 0 0 0]
 [0 0 1 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
Lengths of the repeats in the matrix: [1 1 1 1 2 2 2 3 4 10 12 13 22 23 24 25 33 34 35 36 36 37 37 38
 38 48 59 72 72]
Annotations of the repeats in the matrix: [1 2 3 4 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 2]
List of overlaps:
 []

Step 5: Find the essential structure components of the song and build the aligned hierarchies

Building the aligned hierarchies takes two final steps: finding the essential structure components and using them to create the full aligned hierarchies. hierarchical_structure first finds the essential structure components with breakup_overlaps_by_intersect. After this, modified versions of steps 2-4 take place to create the full hierarchical structure.

Essential Structure Components

The essential structure components are the structure building blocks; that is they are the smallest meaningful repeated structures. All repeated structures within a piece are constructed with right and left unions of the essential structure components. Each timestep can be in at most one essential structure component. The first panel in the below image shows the essential structure components for our example piece. The visualization is organized such that there is one row per type of repeat.
Notice that we have nine types of repeats in the below example.

Creating the aligned hierarchies

After finding the essential structure components for a song, we build the aligned hierarchies using a process whose result is akin to taking right and left unions of the essential structure components. The process begins by creating a list of the essential structure components in the order they appear. We assign each essential structure component the number of the row that it sits in. For consectutive timesteps where there is not essential structure component, we use 0 for that block. In the
below example, this list would be: 1,2,3,4,2,5,6,7,0,1,2,3,4,2,5,6,8,3,4,2,5,6,8,3,4,2,5,6,7,0,9,0,9,0,2,3,4,2,5,0.

Using this list, a thresholded dissimilarity matrix is created. Using steps similar to steps two through four above, we can extract information about the combinations of essential structures. From the thresholded dissimilarity matrix, all diagonals are extracted, starting with the longest one, but are not removed. This way, all possible combinations of essential structure components are found. Then, all these combinations are grouped and checked for overlapping repeated combinations. The final
product is then restructured to show the widths and annotations for each type of repeated structure (represented by each row).

The figures below represent the final result we get, including two of the most important images: the essential structure components (top most panel) and the complete hierarchical structure (bottom panel).

The figure below with the name Threshold Self-dissimilarity matrix of the ordering Essential Structure Components shows the square thresholded self-dissimilarity matrix such that the (i,j) entry is 1 if the following three conditions are true:

	A repeat of an essential structure component is the i-th item in the ordering.

	A repeat of an essential structure component is the j-th item in the ordering.

	The repeat occurring in the i-th place of the ordering and the one occurring in the j-th place of the ordering are repeats of the same essential structure component.

The figure below with the name Repeated ordered sublists of the Essential Structure Components is the result of extracting all the diagonals and getting pairs of repeated ordered sublists of the essential structure components. The repetitive copies of the same repeat and overlaps are also removed.

The second to last figure labeled Repeated ordered sublists of the Essential Structure Components with leading index highlighted contains the same repeats as Repeated ordered sublists of the Essential Structure Components but only notes the starting item in black and shows the rest of the repeat in gray.

The aligned hierarchies are shown in the last image. This is the result of stretching each essential structure component to its correct length (ie. the one noted in the first image below). This transformation results in a visualization that is the number of time steps of the original song.

[12]:

(mat_no_overlaps, key_no_overlaps) = output_tuple[1:3]

Distill non-overlapping repeats into essential structure components and
use them to build the hierarchical representation
output_tuple = hierarchical_structure(mat_no_overlaps, key_no_overlaps, song_length, vis=True)

[image: _images/example_vignette_20_0.png]

[image: _images/example_vignette_20_1.png]

[image: _images/example_vignette_20_2.png]

[image: _images/example_vignette_20_3.png]

[image: _images/example_vignette_20_4.png]

Changelog

v0.1.0

Initial public release.

Index

 _
 | A
 | B
 | C
 | F
 | G
 | H
 | M
 | R
 | S

_

 	
 	__compare_and_cut() (in module repytah.assemble)

 	__create_anno_remove_overlaps() (in module repytah.transform)

 	__find_add_rows() (in module repytah.search)

 	__find_song_pattern() (in module repytah.utilities)

 	
 	__inds_to_rows() (in module repytah.assemble)

 	__merge_based_on_length() (in module repytah.assemble)

 	__merge_rows() (in module repytah.assemble)

 	__num_of_parts() (in module repytah.assemble)

 	__separate_anno_markers() (in module repytah.transform)

A

 	
 	
 add_annotations()

 	built-in function

 	
 	add_annotations() (in module repytah.utilities)

B

 	
 	
 breakup_overlaps_by_intersect()

 	built-in function

 	breakup_overlaps_by_intersect() (in module repytah.assemble)

 	
 built-in function

 	add_annotations()

 	breakup_overlaps_by_intersect()

 	check_overlaps()

 	create_sdm()

 	find_all_repeats()

 	find_complete_list()

 	find_complete_list_anno_only()

 	find_initial_repeats()

 	get_annotation_lst()

 	get_y_labels()

 	hierarchical_structure()

 	reconstruct_full_block()

 	reformat()

 	remove_overlaps()

 	stretch_diags()

C

 	
 	
 check_overlaps()

 	built-in function

 	check_overlaps() (in module repytah.assemble)

 	
 	
 create_sdm()

 	built-in function

 	create_sdm() (in module repytah.utilities)

F

 	
 	
 find_all_repeats()

 	built-in function

 	find_all_repeats() (in module repytah.search)

 	
 find_complete_list()

 	built-in function

 	find_complete_list() (in module repytah.search)

 	
 	
 find_complete_list_anno_only()

 	built-in function

 	find_complete_list_anno_only() (in module repytah.search)

 	
 find_initial_repeats()

 	built-in function

 	find_initial_repeats() (in module repytah.utilities)

G

 	
 	
 get_annotation_lst()

 	built-in function

 	get_annotation_lst() (in module repytah.utilities)

 	
 	
 get_y_labels()

 	built-in function

 	get_y_labels() (in module repytah.utilities)

H

 	
 	
 hierarchical_structure()

 	built-in function

 	
 	hierarchical_structure() (in module repytah.assemble)

M

 	
 	
 module

 	repytah.assemble

 	repytah.search

 	repytah.transform

 	repytah.utilities

R

 	
 	
 reconstruct_full_block()

 	built-in function

 	reconstruct_full_block() (in module repytah.utilities)

 	
 reformat()

 	built-in function

 	reformat() (in module repytah.utilities)

 	
 remove_overlaps()

 	built-in function

 	
 	remove_overlaps() (in module repytah.transform)

 	
 repytah.assemble

 	module

 	
 repytah.search

 	module

 	
 repytah.transform

 	module

 	
 repytah.utilities

 	module

S

 	
 	
 stretch_diags()

 	built-in function

 	
 	stretch_diags() (in module repytah.utilities)

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 repytah	

 	
 	
 repytah.assemble	

 	
 	
 repytah.search	

 	
 	
 repytah.transform	

 	
 	
 repytah.utilities	

Index

 _
 | A
 | B
 | C
 | F
 | G
 | H
 | M
 | R
 | S

_

 	
 	__compare_and_cut() (in module repytah.assemble)

 	__create_anno_remove_overlaps() (in module repytah.transform)

 	__find_add_rows() (in module repytah.search)

 	__find_song_pattern() (in module repytah.utilities)

 	
 	__inds_to_rows() (in module repytah.assemble)

 	__merge_based_on_length() (in module repytah.assemble)

 	__merge_rows() (in module repytah.assemble)

 	__num_of_parts() (in module repytah.assemble)

 	__separate_anno_markers() (in module repytah.transform)

A

 	
 	
 add_annotations()

 	built-in function

 	
 	add_annotations() (in module repytah.utilities)

B

 	
 	
 breakup_overlaps_by_intersect()

 	built-in function

 	breakup_overlaps_by_intersect() (in module repytah.assemble)

 	
 built-in function

 	add_annotations()

 	breakup_overlaps_by_intersect()

 	check_overlaps()

 	create_sdm()

 	find_all_repeats()

 	find_complete_list()

 	find_complete_list_anno_only()

 	find_initial_repeats()

 	get_annotation_lst()

 	get_y_labels()

 	hierarchical_structure()

 	reconstruct_full_block()

 	reformat()

 	remove_overlaps()

 	stretch_diags()

C

 	
 	
 check_overlaps()

 	built-in function

 	check_overlaps() (in module repytah.assemble)

 	
 	
 create_sdm()

 	built-in function

 	create_sdm() (in module repytah.utilities)

F

 	
 	
 find_all_repeats()

 	built-in function

 	find_all_repeats() (in module repytah.search)

 	
 find_complete_list()

 	built-in function

 	find_complete_list() (in module repytah.search)

 	
 	
 find_complete_list_anno_only()

 	built-in function

 	find_complete_list_anno_only() (in module repytah.search)

 	
 find_initial_repeats()

 	built-in function

 	find_initial_repeats() (in module repytah.utilities)

G

 	
 	
 get_annotation_lst()

 	built-in function

 	get_annotation_lst() (in module repytah.utilities)

 	
 	
 get_y_labels()

 	built-in function

 	get_y_labels() (in module repytah.utilities)

H

 	
 	
 hierarchical_structure()

 	built-in function

 	
 	hierarchical_structure() (in module repytah.assemble)

M

 	
 	
 module

 	repytah.assemble

 	repytah.search

 	repytah.transform

 	repytah.utilities

R

 	
 	
 reconstruct_full_block()

 	built-in function

 	reconstruct_full_block() (in module repytah.utilities)

 	
 reformat()

 	built-in function

 	reformat() (in module repytah.utilities)

 	
 remove_overlaps()

 	built-in function

 	
 	remove_overlaps() (in module repytah.transform)

 	
 repytah.assemble

 	module

 	
 repytah.search

 	module

 	
 repytah.transform

 	module

 	
 repytah.utilities

 	module

S

 	
 	
 stretch_diags()

 	built-in function

 	
 	stretch_diags() (in module repytah.utilities)

Assemble

The module assemble.py finds and forms essential structure components, which are
the smallest building blocks that form every repeat in the song. These functions ensure
that each time step of a song is contained in at most one of the song’s essential
structure components by checking that there are no overlapping repeats in time.
When repeats overlap, they undergo a process where they are divided until there are
only non-overlapping pieces left.

This module contains the following functions:

	
breakup_overlaps_by_intersect(input_pattern_obj, bw_vec, thresh_bw)

	Extracts repeats in input_pattern_obj that has the starting indices of the
repeats, into the essential structure components using bw_vec, that has the
lengths of each repeat. The essential structure components are the
smallest building blocks that form every repeat in the song.

	Parameters

	
	input_pattern_objnp.ndarray
	Binary matrix with 1’s where repeats begin
and 0’s otherwise.

	bw_vecnp.ndarray
	Vector containing the lengths of the repeats
encoded in input_pattern_obj.

	thresh_bwint
	Smallest allowable repeat length.

	Returns

	
	pattern_no_overlapsnp.ndrray
	Binary matrix with 1’s where repeats of
essential structure components begin.

	pattern_no_overlaps_keynp.ndarray
	Vector containing the lengths of the repeats
of essential structure components in
pattern_no_overlaps.

	
check_overlaps(input_mat)

	Compares every pair of groups and determines if there are any repeats in
any pairs of the groups that overlap.

	Parameters

	
	input_matnp.array[int]
	Matrix to be checked for overlaps.

	Returns

	
	overlaps_ynnp.array[bool]
	Logical array where (i,j) = 1 if row i of input matrix and row j
of input matrix overlap and (i,j) = 0 elsewhere.

	
hierarchical_structure(matrix_no_overlaps, key_no_overlaps, sn, vis=False)

	Distills the repeats encoded in matrix_no_overlaps (and key_no_overlaps)
to the essential structure components and then builds the hierarchical
representation. Optionally shows visualizations of the hierarchical structure
via the vis argument.

	Parameters

	
	matrix_no_overlapsnp.ndarray[int]
	Binary matrix with 1’s where repeats begin and 0’s otherwise.

	key_no_overlapsnp.ndarray[int]
	Vector containing the lengths of the repeats encoded in matrix_no_overlaps.

	snint
	Song length, which is the number of audio shingles.

	visbool
	Shows visualizations if True (default = False).

	Returns

	
	full_visualizationnp.ndarray[int]
	Binary matrix representation for full_matrix_no_overlaps
with blocks of 1’s equal to the length’s prescribed
in full_key.

	full_keynp.ndarray[int]
	Vector containing the lengths of the hierarchical
structure encoded in full_matrix_no_overlaps.

	full_matrix_no_overlapsnp.ndarray[int]
	Binary matrix with 1’s where hierarchical
structure begins and 0’s otherwise.

	full_anno_lstnp.ndarray[int]
	Vector containing the annotation markers of the
hierarchical structure encoded in each row of
full_matrix_no_overlaps.

The Assemble Module

The assemble module of the repytah package finds and forms essential structure components. These components are the smallest building blocks that form the basis for every repeat in the song. The functions in this module ensure that each time step of a song is contained in at most one of the song’s essential structure components by making none of the repeats overlap in time. When repeats overlap, these repeats undergo a process where they are divided until there are only non-overlapping
pieces left.

The following functions are exported from the assemble module:

	breakup_overlaps_by_intersect: Extracts repeats in input_pattern_obj that has the starting indices of the repeats into the essential structure components using bw_vec that has the lengths of each repeat.

	check_overlaps: Compares every pair of groups, determining if there are any repeats in any pairs of the groups that overlap.

	hierarchical_structure: Distills the repeats encoded in matrix_no_overlaps (and key_no_overlaps) to the essential structure components and then builds the hierarchical representation. Also optionally outputs visualizations of the hierarchical representations.

This module uses find_all_repeats from the `search <https://github.com/smith-tinkerlab/repytah/blob/main/docs/search_vignette.ipynb>`__ module and reconstruct_full_block from the `utilities <https://github.com/smith-tinkerlab/repytah/blob/main/docs/utilities_vignette.ipynb>`__ module.

For more in-depth information on the function calls, an example function pipeline is shown below. Functions from the current module are shown in red.

[image: 43a7fa68007148c292810ca99ea872f3]

Import Modules

[1]:

NumPy is used for mathematical calculations
import numpy as np

Import other modules
from inspect import signature

Import assemble
from repytah.assemble import *

breakup_overlaps_by_intersect

The purpose of this function is to create the essential structure components matrix. Essential structure components contain the smallest building blocks that form every repeat in the song. This matrix is created using input_pattern_obj that has the starting indices of the repeats and a vector bw_vec that has the lengths of each repeat.

The inputs for this function are: - input_pattern_obj (np.ndarray): A binary matrix with 1’s where repeats begin and 0’s otherwise - bw_vec (np.ndarray): Lengths of the repeats encoded in input_pattern_obj - thresh_bw (int): The smallest allowable repeat length

The outputs for this function are: - pattern_no_overlaps (np.ndarray): A binary matrix with 1’s where repeats of essential structure components begin - pattern_no_overlaps_key (np.ndarray): A vector containing the lengths of the repeats of essential structure components in pattern_no_overlaps

[2]:

input_pattern_obj = np.array([[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]])
bw_vec = np.array([[3],
 [5],
 [8],
 [8]])
thresh_bw = 0
print("The input array is: \n", input_pattern_obj)
print("The lengths of the repeats in the input array is: \n", bw_vec)
print("The smallest allowable repeat length is: ", thresh_bw)

The input array is:
 [[1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0]
 [0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
 [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
The lengths of the repeats in the input array is:
 [[3]
 [5]
 [8]
 [8]]
The smallest allowable repeat length is: 0

[3]:

output = breakup_overlaps_by_intersect(input_pattern_obj, bw_vec, thresh_bw)

print("The output array is: \n", output[0])
print("The lengths of the repeats in the output array is: \n", output[1])

The output array is:
 [[1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0]
 [0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
The lengths of the repeats in the output array is:
 [[3]
 [5]]

check_overlaps

This function compares every pair of groups and checks for overlaps between those pairs. To check every pair of groups, the function creates compare_left and compare_right. compare_left repeats each row the number of rows times, and compare_right repeats the whole input the number of rows times. By comparing each corresponding time step in compare_left and compare_right, it determines if there are any overlaps between groups.

The input for this function is:

	input_mat (np.ndarray): An array waiting to be checked for overlaps

The output for this function is: - overlaps_yn (np.ndarray): A logical array where (i,j) = 1 if row i of input matrix and row j of input matrix overlap and (i, j) = 0 elsewhere

[4]:

input_mat = np.array([[0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
 [1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1]])

print("The input array waiting to be checked for overlaps is: \n", input_mat)

The input array waiting to be checked for overlaps is:
 [[0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]
 [0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0]
 [1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1]]

[5]:

output = check_overlaps(input_mat)

print("The output logical array is: \n", output)

The output logical array is:
 [[False True True True]
 [False False True True]
 [False False False False]
 [False False False False]]

hierarchical_structure

This function distills the repeats encoded in matrix_no_overlaps (and key_no_overlaps), which are the outputs from the `remove_overlaps <https://github.com/smith-tinkerlab/repytah/blob/main/docs/transform_vignette.ipynb>`__ function from the transform module, to the essential structure components and then builds the hierarchical representation. It optionally shows visualizations of the hierarchical structure via the vis argument.

The inputs for this function are:

	matrix_no_overlaps (np.array[int]): A binary matrix with 1’s where repeats begin and 0’s otherwise

	key_no_overlaps (np.array[int]): A vector containing the lengths of the repeats encoded in matrix_no_overlaps

	sn (int): The song length, which is the number of audio shingles

	vis (bool): Shows visualizations if True (default = False)

The outputs for this function are:

	full_visualization (np.array[int]): A binary matrix representation for full_matrix_no_overlaps with blocks of 1’s equal to the length’s prescribed in full_key

	full_key (np.array[int]): A vector containing the lengths of the hierarchical structure encoded in full_matrix_no_overlaps

	full_matrix_no_overlaps (np.array[int]): A binary matrix with 1’s where hierarchical structure begins and 0’s otherwise

	full_anno_lst (np.array[int]): A vector containing the annotation markers of the hierarchical structure encoded in each row of full_matrix_no_overlaps

[6]:

matrix_no_overlaps = np.array([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]])
key_no_overlaps = np.array([2])
sn = 20

print("The matrix representation of the non-overlapping repeats is: \n", matrix_no_overlaps)
print("The lengths of the repeats in matrix_no_overlaps are: \n", key_no_overlaps)
print("The song length is: \n", sn)

The matrix representation of the non-overlapping repeats is:
 [[0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]]
The lengths of the repeats in matrix_no_overlaps are:
 [2]
The song length is:
 20

[7]:

output = hierarchical_structure(matrix_no_overlaps, key_no_overlaps, sn, vis=True)

full_visualization = output[0]
full_key = output[1]
full_matrix_no_overlaps = output[2]
full_anno_lst = output[3]

print("The binary matrix representation for the full_matrix_no_overlaps is: \n", full_visualization)
print("The vector containing the lengths of the hierarchical structure encoded in full_matrix_no_overlaps is: \n", full_key)
print("The binary matrix with 1's where hierarchical structure begins and 0's otherwise is: \n", full_matrix_no_overlaps)
print("The vector containing the annotation markers of the hierarchical structure encoded in each row \n of full_matrix_no_overlaps is: \n", full_anno_lst)

[image: _images/assemble_vignette_11_0.png]

[image: _images/assemble_vignette_11_1.png]

[image: _images/assemble_vignette_11_2.png]

[image: _images/assemble_vignette_11_3.png]

[image: _images/assemble_vignette_11_4.png]

The binary matrix representation for the full_matrix_no_overlaps is:
 [[0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0]]
The vector containing the lengths of the hierarchical structure encoded in full_matrix_no_overlaps is:
 [[2]]
The binary matrix with 1's where hierarchical structure begins and 0's otherwise is:
 [[0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]]
The vector containing the annotation markers of the hierarchical structure encoded in each row
 of full_matrix_no_overlaps is:
 [1]

Search

The module search.py holds functions used to find and record the diagonals
in the thresholded matrix, T. These functions prepare the diagonals found for
transformation and assembling later.

This module contains the following functions:

	
find_complete_list(pair_list, song_length)

	Finds all smaller diagonals (and the associated pairs of repeats) that are
contained in pair_list, which is composed of larger diagonals found in
find_initial_repeats.

	Parameters

	
	pair_listnp.ndarray
	List of pairs of repeats found in earlier steps
(bandwidths MUST be in ascending order). If you have
run find_initial_repeats before this script,
then pair_list will be ordered correctly.

	song_lengthint
	Song length, which is the number of audio shingles.

	Returns

	
	lst_outnp.ndarray
	List of pairs of repeats with smaller repeats added.

	
find_all_repeats(thresh_mat, bw_vec)

	Finds all the diagonals present in thresh_mat. This function is nearly
identical to find_initial_repeats, with two crucial differences.
First, we do not remove diagonals after we find them. Second,
there is no smallest bandwidth size as we are looking for all diagonals.

	Parameters

	
	thresh_matnp.ndarray
	Thresholded matrix that we extract diagonals from.

	bw_vecnp.ndarray
	Vector of lengths of diagonals to be found.
Should be 1, 2, 3, …, n where n is the number of timesteps.

	Returns

	
	all_lstnp.array
	Pairs of repeats that correspond to diagonals in thresh_mat.

	
find_complete_list_anno_only(pair_list, song_length)

	Finds annotations for all pairs of repeats found in find_all_repeats.
This list contains all the pairs of repeated structures with their
starting/ending indices and lengths.

	Parameters

	
	pair_listnp.ndarray
	List of pairs of repeats.
WARNING: Bandwidths must be in ascending order.

	song_lengthint
	Number of audio shingles in song.

	Returns

	
	out_lstnp.ndarray
	List of pairs of repeats with smaller repeats added and with
annotation markers.

The Search Module

The search module of the repytah package holds functions used to find and record the diagonals in the thresholded matrix, T. These functions prepare the found diagonals for transformation and assembling later.

	find_complete_list: Finds all smaller diagonals (and the associated pairs of repeats) that are contained in pair_list, which is composed of larger diagonals found in `find_initial_repeats <https://github.com/smith-tinkerlab/repytah/blob/main/docs/utilities_vignette.ipynb>`__.

	find_all_repeats: Finds all the diagonals present in thresh_mat. This function is nearly identical to find_initial_repeats except for two crucial differences. First, we do not remove diagonals after we find them. Second, there is no smallest bandwidth size as we are looking for all diagonals.

	find_complete_list_anno_only: Finds annotations for all pairs of repeats found in find_all_repeats. This list contains all the pairs of repeated structures with their starting/ending indices and lengths.

The following functions are imported from the `utilities <https://github.com/smith-tinkerlab/repytah/blob/main/docs/utilities_vignette.ipynb>`__ module to reformat outputs and assist with the operations of the `search <https://github.com/smith-tinkerlab/repytah/blob/main/docs/search_vignette.ipynb>`__ functions.

	add_annotations

For more in-depth information on the function calls, an example function pipeline is shown below. Functions from the current module are shown in purple.

[image: e1300b45150844c58cf78fcf334f8bb0]

Importing necessary modules

[1]:

NumPy is used for mathematical calculations
import numpy as np

Import search
from repytah.search import *

find_complete_list

As seen in the flow chart, find_initial_repeats is called by `example <https://github.com/smith-tinkerlab/repytah/blob/main/docs/example_vignette.ipynb>`__ right before find_complete_list. In find_complete_list, smaller pairs of repeats are added to the original list of pairs of repeats made in find_initial_repeats. All of the pairs of repeats correspond to each repeated structure in another numpy array called thresh_mat. This array holds all the repeated structures in a
sequential data stream and the repeated structures are represented as diagonals.

The inputs for the function are:

	pair_list (np.ndarray): List of pairs of repeats found in earlier steps (bandwidths MUST be in ascending order). If you have run find_initial_repeats before this script, then pair_list will be ordered correctly.

	song_length (int): Song length, which is the number of audio shingles.

The output for the function is:

	lst_out (np.ndarray): List of pairs of repeats with smaller repeats added.

[2]:

pair_list = np.array([[1, 10, 46, 55, 10],
 [31, 40, 46, 55, 10],
 [10, 20, 40, 50, 11],
 [1, 15, 31, 45, 15]])
song_length = 55

print("The input array is: \n", pair_list)
print("The number of audio shingles is: \n", song_length)

The input array is:
 [[1 10 46 55 10]
 [31 40 46 55 10]
 [10 20 40 50 11]
 [1 15 31 45 15]]
The number of audio shingles is:
 55

[3]:

output = find_complete_list(pair_list, song_length)

print("The output array is: \n", output)

The output array is:
 [[11 15 41 45 5 1]
 [1 10 31 40 10 1]
 [1 10 46 55 10 1]
 [31 40 46 55 10 1]
 [10 20 40 50 11 1]
 [1 15 31 45 15 1]]

In this example, there are two more rows added to the initial pair_list input, as find_complete_list can detect smaller diagonals contained in larger diagonals already found in find_initial_repeats. The repeats now look like this:

[image: alt text]

Each row represents a pair of repeats, and each column represents a time step. The time steps with the color black are the starting indices for repeats of length k that we use to check lst_no_anno for more repeats of length k.

[image: alt text]

With the same starting index and same length, we can find the same repeats in the color yellow.

[image: alt text]

Then we find two more groups of repeats.

find_all_repeats

find_all_repeats finds all the diagonals present in thresh_mat. This function is nearly identical to find_initial_repeats, with two crucial differences. First, we do not remove diagonals after we find them. Second, there is no smallest bandwidth size as we are looking for all diagonals.

The inputs for the function are:

	thresh_mat (np.ndarray): Thresholded matrix that we extract diagonals from

	band_width_vec (np.ndarray): Vector of lengths of diagonals to be found. Should be 1, 2, 3, …, n where n is the number of timesteps.

The output for the function is:

	all_lst (np.ndarray): Pairs of repeats that correspond to diagonals in thresh_mat

[4]:

thresh_mat = np.array([[1, 0, 1, 0, 0],
 [0, 1, 0, 1, 0],
 [1, 0, 1, 0, 1],
 [0, 1, 0, 1, 0],
 [0, 0, 1, 0, 1]])

bandwidth_vec = np.array([1, 2, 3, 4, 5])

print("The threshold matrix is: \n", thresh_mat)
print("The lengths of the diagonals to be found are: \n", bandwidth_vec)

The threshold matrix is:
 [[1 0 1 0 0]
 [0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]
 [0 0 1 0 1]]
The lengths of the diagonals to be found are:
 [1 2 3 4 5]

[5]:

output = find_all_repeats(thresh_mat, bandwidth_vec)

print("The output array is: \n", output)

The output array is:
 [[1 1 3 3 1]
 [2 2 4 4 1]
 [3 3 5 5 1]
 [1 2 3 4 2]
 [2 3 4 5 2]
 [1 2 3 4 2]
 [2 3 4 5 2]]

find_complete_list_anno_only

find_complete_list_anno_only finds annotations for all pairs of repeats found in find_initial_repeats. This list contains all the pairs of repeated structures with their starting/ending indices and lengths.

The inputs for the function are:

	pair_list (np.ndarray): List of pairs of repeats.

	song_length (int): Number of audio shingles in song.

The output for the function is:

	out_lst (np.ndarray): List of pairs of repeats with smaller repeats added and with annotation markers.

[6]:

pair_list = np.array([[3, 3, 5, 5, 1],
 [2, 2, 8, 8, 1],
 [3, 3, 9, 9, 1],
 [2, 2, 15, 15, 1],
 [8, 8, 15, 15, 1],
 [4, 4, 17, 17, 1],
 [2, 3, 8, 9, 2],
 [3, 4, 9, 10, 2],
 [2, 3, 15, 16, 2],
 [8, 9, 15, 16, 2],
 [3, 4, 16, 17, 2],
 [2, 4, 8, 10, 3],
 [3, 5, 9, 11, 3],
 [7, 9, 14, 16, 3],
 [2, 4, 15, 17, 3],
 [3, 5, 16, 18, 3],
 [9, 11, 16, 18, 3],
 [7, 10, 14, 17, 4],
 [7, 11, 14, 18, 5],
 [8, 12, 15, 19, 5],
 [7, 12, 14, 19, 6]])
song_length = 19

print("The pairs of repeats are: \n", pair_list)
print("The number of audio shingles in the song is:", song_length)

The pairs of repeats are:
 [[3 3 5 5 1]
 [2 2 8 8 1]
 [3 3 9 9 1]
 [2 2 15 15 1]
 [8 8 15 15 1]
 [4 4 17 17 1]
 [2 3 8 9 2]
 [3 4 9 10 2]
 [2 3 15 16 2]
 [8 9 15 16 2]
 [3 4 16 17 2]
 [2 4 8 10 3]
 [3 5 9 11 3]
 [7 9 14 16 3]
 [2 4 15 17 3]
 [3 5 16 18 3]
 [9 11 16 18 3]
 [7 10 14 17 4]
 [7 11 14 18 5]
 [8 12 15 19 5]
 [7 12 14 19 6]]
The number of audio shingles in the song are: 19

[7]:

output = find_complete_list_anno_only(pair_list, song_length)

print("The output array is: \n", output)

The output array is:
 [[2 2 8 8 1 1]
 [2 2 15 15 1 1]
 [8 8 15 15 1 1]
 [3 3 5 5 1 2]
 [3 3 9 9 1 2]
 [4 4 17 17 1 3]
 [2 3 8 9 2 1]
 [2 3 15 16 2 1]
 [8 9 15 16 2 1]
 [3 4 9 10 2 2]
 [3 4 16 17 2 2]
 [2 4 8 10 3 1]
 [2 4 15 17 3 1]
 [3 5 9 11 3 2]
 [3 5 16 18 3 2]
 [9 11 16 18 3 2]
 [7 9 14 16 3 3]
 [7 10 14 17 4 1]
 [7 11 14 18 5 1]
 [8 12 15 19 5 2]
 [7 12 14 19 6 1]]

Transform

The module transform.py contains functions that transform matrix inputs
into different forms that are of use in bigger functions where they are called.
These functions focus mainly on overlapping repeated structures and annotation
markers.

This module contains the following functions:

	
remove_overlaps(input_mat, song_length)

	Removes any pairs of repeat length and specific annotation marker
where there exists at least one pair of repeats that overlap in time.

	Parameters

	
	input_matnp.ndarray[int]
	List of pairs of repeats with annotations marked. The first
two columns refer to the first repeat or the pair, the second
two refer to the second repeat of the pair, the fifth column
refers to the length of the repeats, and the sixth column
contains the annotation markers.

	song_lengthint
	Number of audio shingles.

	Returns

	
	lst_no_overlapsnp.ndarray[int]
	List of pairs of repeats with annotations marked. All the
repeats of a given length and with a specific annotation
marker do not overlap in time.

	matrix_no_overlapsnp.ndarray[int]
	Matrix representation of lst_no_overlaps with one row for
each group of repeats.

	key_no_overlapsnp.ndarray[int]
	Vector containing the lengths of the repeats encoded in
each row of matrix_no_overlaps.

	annotations_no_overlapsnp.ndarray[int]
	Vector containing the annotation markers of the repeats
encoded in each row of matrix_no_overlaps.

	all_overlap_lstnp.ndarray[int]
	List of pairs of repeats with annotations marked removed
from input_mat. For each pair of repeat length and specific
annotation marker, there exist at least one pair of repeats
that do overlap in time.

The Transform Module

The transform module of the repytah package holds functions used to transform matrix inputs into different forms that are of use in larger functions from other modules. The functions in the transform module focus mainly on overlapping repeated structures and annotation markers.

The transform module includes the following functions:

	remove_overlaps: Removes any pairs of repeats with the same length and annotation marker where at least one pair of repeats overlap in time

The functions in the repytah package are meant to be used alongside other functions in the package, so many examples use functions from multiple modules. In the examples below, the following functions from the `utilities <https://github.com/smith-tinkerlab/repytah/blob/main/docs/utilities_vignette.ipynb>`__ module are called: - add_annotations - reconstruct_full_block

For more in-depth information on the function calls, an example function pipeline is shown below. Functions from the current module are shown in green.

[image: f252f54a986f4509bfe8e91b42023913]

Importing necessary modules

[1]:

NumPy is used for mathematical calculations
import numpy as np

Import transform
from repytah.transform import *

remove_overlaps

remove_overlaps removes any pairs of repeat length and specific annotation marker where there exists at least one pair of repeats that overlap in time.

The inputs for the function are: - input_mat (np.ndarray): A list of pairs of repeats with annotations marked. The first two columns refer to the first repeat, the second two columns refer to the second repeat, the fifth column denotes repeat length, and the last column contains the annotation markers. - song_length (int): The number of audio shingles in the song

The outputs for the function are: - lst_no_overlaps (np.ndarray): A list of pairs of non-overlapping repeats with annotations marked. All the repeats of a given length and with a specific annotation marker do not overlap in time. - matrix_no_overlaps (np.ndarray): A matrix representation of lst_no_overlaps where each row corresponds to a group of repeats - key_no_overlaps (np.ndarray): A vector containing the lengths of the repeats in each row of matrix_no_overlaps
- annotations_no_overlaps (np.ndarray): A vector containing the annotations of the repeats in each row of matrix_no_overlaps - all_overlap_lst (np.ndarray): A list of pairs of repeats with annotations marked removed from input_mat. For each pair of repeat length and specific annotation marker, there exists at least one pair of repeats that overlap in time.

[2]:

input_mat = np.array([[1, 4, 11, 14, 4, 1],
 [4, 7, 14, 17, 4, 1],
 [2, 3, 12, 13, 2, 1]])
song_length = 20

print("The input array is: \n", input_mat)
print("The number of shingles is:", song_length)

The input array is:
 [[1 4 11 14 4 1]
 [4 7 14 17 4 1]
 [2 3 12 13 2 1]]
The number of shingles is: 20

[3]:

lst_no_overlaps, matrix_no_overlaps, key_no_overlaps, annotations_no_overlaps, all_overlap_lst = remove_overlaps(input_mat, song_length)

print("The array of the non-overlapping repeats is: \n", lst_no_overlaps)
print("The matrix representation of the non-overlapping repeats is: \n", matrix_no_overlaps)
print("The lengths of the repeats in matrix_no_overlaps are: \n", key_no_overlaps)
print("The annotations from matrix_no_overlaps are: \n", annotations_no_overlaps)
print("The array of overlapping repeats is: \n", all_overlap_lst)

The array of the non-overlapping repeats is:
 [[2 3 12 13 2 1]]
The matrix representation of the non-overlapping repeats is:
 [[0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]]
The lengths of the repeats in matrix_no_overlaps are:
 [2]
The annotations from matrix_no_overlaps are:
 [1]
The array of overlapping repeats is:
 [[1 4 11 14 4 1]
 [4 7 14 17 4 2]]

Utilities

The module utilities.py, when imported, allows search.py, transform.py and
assemble.py in the repytah package to run smoothly.

This module contains the following functions:

	
create_sdm(fv_mat, num_fv_per_shingle)

	Creates self-dissimilarity matrix; this matrix is found by creating audio
shingles from feature vectors, and finding the cosine distance between
shingles.

	Parameters

	
	fv_matnp.ndarray
	Matrix of feature vectors where each column is a time step and each
row includes feature information i.e. an array of 144 columns/beats
and 12 rows corresponding to chroma values.

	num_fv_per_shingleint
	Number of feature vectors per audio shingle.

	Returns

	
	self_dissim_matnp.ndarray
	Self-dissimilarity matrix with paired cosine distances between shingles.

	
find_initial_repeats(thresh_mat, bandwidth_vec, thresh_bw)

	Looks for the largest repeated structures in thresh_mat. Finds all
repeated structures, represented as diagonals present in thresh_mat,
and then stores them with their start/end indices and lengths in a
list. As each diagonal is found, they are removed to avoid identifying
repeated sub-structures.

	Parameters

	
	thresh_matnp.ndarray[int]
	Thresholded matrix that we extract diagonals from.

	bandwidth_vecnp.ndarray[1D,int]
	Array of lengths of diagonals to be found. Should be
1, 2, 3, …, n where n is the number of timesteps.

	thresh_bwint
	Smallest allowed diagonal length.

	Returns

	
	all_lstnp.ndarray[int]
	List of pairs of repeats that correspond to diagonals in
thresh_mat.

	
stretch_diags(thresh_diags, band_width)

	Creates a binary matrix with full length diagonals from a binary matrix of
diagonal starts and length of diagonals.

	Parameters

	
	thresh_diagsnp.ndarray
	Binary matrix where entries equal to 1 signals the existence
of a diagonal.

	band_widthint
	Length of encoded diagonals.

	Returns

	
	stretch_diag_matnp.ndarray[bool]
	Logical matrix with diagonals of length band_width starting
at each entry prescribed in thresh_diag.

	
add_annotations(input_mat, song_length)

	Adds annotations to the pairs of repeats in input_mat.

	Parameters

	
	input_matnp.ndarray
	List of pairs of repeats. The first two columns refer to
the first repeat of the pair. The third and fourth columns
refer to the second repeat of the pair. The fifth column
refers to the repeat lengths. The sixth column contains any
previous annotations, which will be removed.

	song_lengthint
	Number of audio shingles in the song.

	Returns

	
	anno_listnp.ndarray
	List of pairs of repeats with annotations marked.

	
reconstruct_full_block(pattern_mat, pattern_key)

	Creates a record of when pairs of repeated structures occur, from the
first beat in the song to the end. This record is a binary matrix with a
block of 1’s for each repeat encoded in pattern_mat whose length is
encoded in pattern_key.

	Parameters

	
	pattern_matnp.ndarray
	Binary matrix with 1’s where repeats begin and 0’s otherwise.

	pattern_keynp.ndarray
	Vector containing the lengths of the repeats encoded in
each row of pattern_mat.

	Returns

	
	pattern_blocknp.ndarray
	Binary matrix representation for pattern_mat with blocks
of 1’s equal to the length’s prescribed in pattern_key.

	
get_annotation_lst(key_lst)

	Creates one annotation marker vector, given vector of lengths key_lst.

	Parameters

	
	key_lstnp.ndarray[int]
	Array of lengths in ascending order.

	Returns

	
	anno_lst_outnp.ndarray[int]
	Array of one possible set of annotation markers for key_lst.

	
get_y_labels(width_vec, anno_vec)

	Generates the labels for visualization with width_vec and anno_vec.

	Parameters

	
	width_vecnp.ndarray[int]
	Vector of widths for a visualization.

	anno_vecnp.ndarray[int]
	Array of annotations for a visualization.

	Returns

	
	y_labelsnp.ndarray[str]
	Labels for the y-axis of a visualization.

	
reformat(pattern_mat, pattern_key)

	Transforms a binary array with 1’s where repeats start and 0’s
otherwise into a list of repeated structures. This list consists of
information about the repeats including length, when they occur and when
they end.

Every row has a pair of repeated structure. The first two columns are
the time steps of when the first repeat of a repeated structure start and
end. Similarly, the second two columns are the time steps of when the
second repeat of a repeated structure start and end. The fifth column is
the length of the repeated structure.

Reformat is not used in the main process for creating the
aligned-hierarchies. It is helpful when writing example inputs for
the tests.

	Parameters

	
	pattern_matnp.ndarray
	Binary array with 1’s where repeats start and 0’s otherwise.

	pattern_keynp.ndarray
	Array with the lengths of each repeated structure in pattern_mat.

	Returns

	
	info_matnp.ndarray
	Array with the time steps of when the pairs of repeated structures
start and end organized.

The Utilities Module

The utilities module of the repytah package holds functions commonly called by other modules in order for the entire package to run smoothly. utilities includes the following functions: - create_sdm: Creates a self-dissimilarity matrix; this matrix is found by creating audio shingles from feature vectors, and finding the cosine distance between shingles.

	find_initial_repeats: Finds all diagonals present in thresh_mat, removing each diagonal as it is found.

	stretch_diags: Fills out diagonals in binary self-dissimilarity matrix from diagonal starts and lengths.

	add_annotations: Adds annotations to each pair of repeated structures according to their length and order of occurrence.

	get_annotation_list: Gets one annotation marker vector, given vector of lengths key_lst.

	get_y_labels: Generates the labels for visualization with width_vec and anno_vec.

	reformat (only used for creating test examples): Transforms a binary matrix representation of when repeats occur in a song into a list of repeated structures detailing the length and occurrence of each repeat.

These functions are called multiple times throughout the package to reformat the outputs of various functions. Functions from utilities are shown in yellow in the example function pipeline below. [image: 844fd4bb271d48dbbaeb5b0d69ddd63d]

Importing necessary modules

[1]:

NumPy is used for mathematical calculations
import numpy as np

Matplotlib is used to display output
import matplotlib.pyplot as plt

Import utilities
from repytah.utilities import *

create_sdm

This function creates a self-dissimilarity matrix. This matrix is found by creating audio shingles from feature vectors, and finding the cosine distance between shingles.

The inputs for the function are: - fv_mat (np.ndarray): A matrix of feature vectors where each column is a timestep and each row includes feature information. i.e. an array of 144 columns/beats and 12 rows corresponding to chroma values. - num_fv_per_shingle (int): The number of feature vectors per audio shingle

The output for the function is: - self_dissim_mat (np.ndarray): A self-dissimilarity matrix with paired cosine distances between shingles

[2]:

fv_mat = np.array([[0, 0.5, 0, 0, 0, 1, 0, 0],
 [0, 2, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 3, 0],
 [0, 3, 0, 0, 2, 0, 0, 0],
 [0, 1.5, 0, 0, 5, 0, 0, 0]])

num_fv_per_shingle = 3

print('The input matrix of feature vectors is:\n', fv_mat)
print('The number of feature vectors per audio shingles is:', num_fv_per_shingle)

The input matrix of feature vectors is:
 [[0. 0.5 0. 0. 0. 1. 0. 0.]
 [0. 2. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 3. 0.]
 [0. 3. 0. 0. 2. 0. 0. 0.]
 [0. 1.5 0. 0. 5. 0. 0. 0.]]
The number of feature vectors per audio shingles is: 3

[3]:

self_dissim_mat = create_sdm(fv_mat, num_fv_per_shingle)
print('The resulting self-dissimilarity matrix is:\n', self_dissim_mat)

The resulting self-dissimilarity matrix is:
 [[0. 1. 1. 0.37395249 0.9796637 1.]
 [1. 0. 1. 1. 0.45092001 0.95983903]
 [1. 1. 0. 1. 1. 1.]
 [0.37395249 1. 1. 0. 1. 1.]
 [0.9796637 0.45092001 1. 1. 0. 1.]
 [1. 0.95983903 1. 1. 1. 0.]]

The resulting self-dissimilarity can be shown as a picture in which the color represents the similarity between two shingles. The darker the color of a pixel, the more similar the two shingles are.

[4]:

plt.imshow(self_dissim_mat,cmap='gray')
plt.title("The self-dissimilarity matrix")
plt.show()

[image: _images/utilities_vignette_7_0.png]

find_initial_repeats

This function identifies all repeated structures in a sequential data stream which are represented as diagonals in thresh_mat and then stores the pairs of repeats that correspond to each repeated structure in a list. The function finds the diagonals of lengths from the largest to the smallest, searches for non-overlapping shingles first, and cuts the overlapping shingles to up to 3 non-overlapping parts. As each diagonal is found, they are removed to avoid identifying repeated
sub-structures.

The image below illustrates the overlapping parts given two repeats starting with time steps \(i\) and \(j\) and having length \(k\). The left and right segments will always exist because \(i \neq j\), but the middle segment will only exist if \(k > 2(j - i)\).

[image: alt text]

The inputs for the function are: - thresh_mat (np.ndarray): A thresholded matrix from which diagonals are extracted - bandwidth_vec (np.ndarray): An array of lengths of diagonals to be found - thresh_bw (int): The smallest allowed diagonal length

The output for the function is: - all_lst (np.ndarray): Pairs of repeats that correspond to diagonals in thresh_mat

[5]:

thresh_mat = np.array([[1, 0, 0, 1, 0, 0, 0, 1, 0, 0],
 [0, 1, 0, 0, 1, 1, 0, 0, 1, 0],
 [0, 0, 1, 0, 0, 1, 1, 0, 0, 1],
 [1, 0, 0, 1, 0, 0, 1, 1, 0, 0],
 [0, 1, 0, 0, 1, 0, 1, 0, 0, 0],
 [0, 1, 1, 0, 0, 1, 0, 1, 1, 0],
 [0, 0, 1, 1, 1, 0, 1, 0, 1, 0],
 [1, 0, 0, 1, 0, 1, 0, 1, 0, 1],
 [0, 1, 0, 0, 0, 1, 1, 0, 1, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 1]])

bandwidth_vec = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
thresh_bw = 0

print('The thresholded matrix is:\n', thresh_mat)
print('The lengths of diagonals to be found are:', bandwidth_vec)
print('The smalled allowed diagonal length is:', thresh_bw)

The thresholded matrix is:
 [[1 0 0 1 0 0 0 1 0 0]
 [0 1 0 0 1 1 0 0 1 0]
 [0 0 1 0 0 1 1 0 0 1]
 [1 0 0 1 0 0 1 1 0 0]
 [0 1 0 0 1 0 1 0 0 0]
 [0 1 1 0 0 1 0 1 1 0]
 [0 0 1 1 1 0 1 0 1 0]
 [1 0 0 1 0 1 0 1 0 1]
 [0 1 0 0 0 1 1 0 1 0]
 [0 0 1 0 0 0 0 1 0 1]]
The lengths of diagonals to be found are: [1 2 3 4 5 6 7 8 9 10]
The smalled allowed diagonal length is: 0

[6]:

all_lst = find_initial_repeats(thresh_mat, bandwidth_vec, thresh_bw)

print("The pairs of repeats are:\n", all_lst)

The pairs of repeats are:
 [[6 6 9 9 1]
 [5 6 7 8 2]
 [7 8 9 10 2]
 [1 3 4 6 3]
 [1 3 8 10 3]
 [2 4 5 7 3]
 [2 4 6 8 3]
 [1 10 1 10 10]]

stretch_diags

This function creates a binary matrix with full-length diagonals from a binary matrix of diagonal starts and length of diagonals.

The inputs for the function are: - thresh_diags (np.ndarray): A binary matrix where entries equal to 1 signals the existence of a diagonal - band_width (int): The length of encoded diagonals

The output for the function is: - stretch_diag_mat (np.ndarray): A logical matrix with diagonals of length band_width starting at each entry prescribed in thresh_diag

[7]:

thresh_diags = np.matrix([[0, 0, 1, 0, 0],
 [0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]])

band_width = 3

print("The input matrix is:\n", thresh_diags)
print("The length of the encoded diagonals is:", band_width)

The input matrix is:
 [[0 0 1 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 0 0]
 [0 0 0 0 0]]
The length of the encoded diagonals is: 3

[8]:

stretched_diagonal = stretch_diags(thresh_diags, band_width)

print("The output matrix is:\n", stretched_diagonal)

The output matrix is:
 [[False False False False False False False]
 [False True False False False False False]
 [True False True False False False False]
 [False True False True False False False]
 [False False True False True False False]
 [False False False False False False False]
 [False False False False False False False]]

add_annotations

This function adds annotations to each pair of repeated structures in input_mat according to their length and order of occurrence to differentiate between different repeats of the same length.

The inputs for the function are: - input_mat (np.ndarray): Pairs of repeats. The first two columns refer to the first repeat of the pair. The third and fourth columns refer to the second repeat of the pair. The fifth column refers to the repeat lengths. The sixth column contains any previous annotations, which will be removed. - song_length (int): The number of shingles in the song

The output for the function is: - anno_list (np.ndarray): Pairs of repeats with annotations marked

[9]:

input_mat = np.array([[2, 5, 8, 11, 4, 0],
 [7, 10, 14, 17, 4, 0],
 [2, 5, 15, 18, 4, 0],
 [8, 11, 15, 18, 4, 0],
 [9, 12, 16, 19, 4, 0]])

song_length = 19

print("The input array is: \n", input_mat)
print("The number of shingles is:", song_length)

The input array is:
 [[2 5 8 11 4 0]
 [7 10 14 17 4 0]
 [2 5 15 18 4 0]
 [8 11 15 18 4 0]
 [9 12 16 19 4 0]]
The number of shingles is: 19

[10]:

annotated_array = add_annotations(input_mat, song_length)
print("The array of repeats with annotations is:\n", annotated_array)

The array of repeats with annotations is:
 [[2 5 8 11 4 1]
 [2 5 15 18 4 1]
 [8 11 15 18 4 1]
 [7 10 14 17 4 2]
 [9 12 16 19 4 3]]

reconstruct_full_block

This function creates a record of when pairs of repeated structures occur, from the first beat in the song to the end. This record is a binary matrix with a block of 1’s for each repeat encoded in pattern_mat whose length is encoded in pattern_key. By looping over all rows of pattern_mat, reconstruct_full_block reconstructs each row using the pattern_key.

For each row of pattern_mat, a new row is created for pattern_block by looping over the same row of pattern_mat and shifting the position of 1’s the number of times equivalent to the length of the repeat, storing each unique row with shifted values in a separate array. The sum of all of the shifted rows is then taken along the x-axis, thus creating a row that represents where each repeat occurs with blocks of 1’s.

For example, if the row in pattern_mat is [0 0 1 0 0 0 0 0 1 0 0 0 1 0 0], with a repeat length of 3, then new rows created by the for loop are:

[0 0 1 0 0 0 0 0 1 0 0 0 1 0 0] [0 0 0 1 0 0 0 0 0 1 0 0 0 1 0] [0 0 0 0 1 0 0 0 0 0 1 0 0 0 1]

These rows are then summed along the y-axis to become: [0 0 1 1 1 0 0 0 1 1 1 0 1 1 1] This is then appended to the output pattern_block.

The inputs for the function are: - pattern_mat (np.ndarray): A binary matrix with 1’s where repeats begin and 0’s otherwise - pattern_key (np.ndarray): The number of feature vectors per audio shingle

The output for the function is: - pattern_block (np.ndarray): A binary matrix representation for pattern_mat with blocks of 1’s equal to the length’s prescribed in pattern_key

[11]:

pattern_mat = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 1, 0, 0, 0]])

pattern_key = np.array([1, 2, 2, 3, 4])

print("The input binary matrix is:\n", pattern_mat)
print("The input pattern key is:\n", pattern_key)

The input binary matrix is:
 [[0 0 0 0 1 0 0 0 0 1]
 [0 1 0 0 0 0 0 1 0 0]
 [0 0 1 0 0 0 0 0 1 0]
 [1 0 0 0 0 0 1 0 0 0]
 [1 0 0 0 0 0 1 0 0 0]]
The input pattern key is:
 [1 2 2 3 4]

[12]:

pattern_block = reconstruct_full_block(pattern_mat, pattern_key)
print("The reconstructed full block is:\n", pattern_block)

The reconstructed full block is:
 [[0 0 0 0 1 0 0 0 0 1]
 [0 1 1 0 0 0 0 1 1 0]
 [0 0 1 1 0 0 0 0 1 1]
 [1 1 1 0 0 0 1 1 1 0]
 [1 1 1 1 0 0 1 1 1 1]]

get_annotation_list

This function takes in a vector of lengths key_lst, counts the time each length occurs as its annotation maker, and outputs all annotation markers as a vector.

The input for the function is: - key_lst (np.ndarray): Array of lengths in ascending order

The output for the function is: - anno_lst_out (np.ndarray): Array of one possible set of annotation markers for key_lst

[13]:

key_lst = np.array([1, 2, 2, 3, 3, 3, 5, 7, 8, 8, 9])

print("The input array of lengths is: \n", key_lst)

The input array of lengths is:
 [1 2 2 3 3 3 5 7 8 8 9]

[14]:

anno_lst_out = get_annotation_lst(key_lst)

print("The output array is: \n", anno_lst_out)

The output array is:
 [1 1 2 1 2 3 1 1 1 2 1]

get_y_labels

This function generates labels for visualization with repeat lengths and annotations of each length. Note that the first 0 is always printed out because it acts as the hidden origin label for the later visualization.

The inputs for the function are:

	width_vec (np.ndarray): Vector of widths for a visualization

	anno_vec (np.ndarray): Array of annotations for a visualization

The output for the function is: - y_labels(str): Labels for the y-axis of a visualization

[15]:

width_vec = np.array([[1], [2], [3], [4], [4], [5], [5], [6]])
anno_vec = np.array([1, 1, 1, 1, 2, 1, 1, 1])

print("The vector of widths is: \n", width_vec)
print("The array of annotation makers is: \n", anno_vec)

The vector of widths is:
 [[1]
 [2]
 [3]
 [4]
 [4]
 [5]
 [5]
 [6]]
The array of annotation makers is:
 [1 1 1 1 2 1 1 1]

[16]:

y_labels = get_y_labels(width_vec, anno_vec)

print("The output string is: \n", y_labels)

The output string is:
 ['0' 'w = 1, a = 1' 'w = 2, a = 1' 'w = 3, a = 1' 'w = 4, a = 1'
 'w = 4, a = 2' 'w = 5, a = 1' 'w = 5, a = 1' 'w = 6, a = 1']

reformat

This function is helpful when writing example inputs for aligned hierarchies. It is not used in the main functions for creating the aligned hierarchies. It first finds the starting indices of the repeated structures row by row, and assigns the time steps of the repeated structures based on starting indices.

The inputs for the function are: - pattern_mat (np.ndarray): Binary array with 1’s where repeats start and 0’s otherwise - pattern_key (np.ndarray): Array with the lengths of each repeated structure in pattern_mat

The output for the function is: - info_mat (np.ndarray): Array with the time steps of when the pairs of repeated structures start and end organized

[17]:

pattern_mat = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
 [0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
 [1, 0, 0, 0, 0, 0, 1, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 1, 0, 0, 0]])

pattern_key = np.array([1, 2, 2, 3, 4])

print("The input matrix is:\n", pattern_mat)
print("The length of repeated structure is:", pattern_key)

The input matrix is:
 [[0 0 0 0 1 0 0 0 0 1]
 [0 1 0 0 0 0 0 1 0 0]
 [0 0 1 0 0 0 0 0 1 0]
 [1 0 0 0 0 0 1 0 0 0]
 [1 0 0 0 0 0 1 0 0 0]]
The length of repeated structure is: [1 2 2 3 4]

[18]:

info_mat = reformat(pattern_mat, pattern_key)

print("The output matrix is:\n", info_mat)

The output matrix is:
 [[5 5 10 10 1]
 [2 3 8 9 2]
 [3 4 9 10 2]
 [1 3 7 9 3]
 [1 4 7 10 4]]

 _images/quick_start_8_0.png
Self-Dissimilarity Matrix

201

40 1% .

60

80 1

100 A

120 A

140 4.

0 25 50 75 100 125

_images/score.jpg
Complete Aligned Hierarchies

0 20 40 60 80 100 120 140

_images/quick_start_5_3.png
Repeated Ordered Sublists of the Essential Structure Components with Leading Index Highlighted

_images/quick_start_5_4.png
Complete Aligned Hierarchies

w=10,a

w=11,a

w=13a

w=13a

w=14,a

w=23a

w=24,a

w=24,a

w=25a

w=26,a

w=27a

60 80 100 120 140

_images/utilities_vignette_7_0.png
The self-dissimilarity matrix

_images/score1.jpg
A Princess de Wirtemberg.

Allegro non tanto.

Quatre

Mazurkas.

F. CHOPIN.0p.30,N2 1.

18.&" = r = =
(Enm = = ==
e =TT e L e i
SSEEEE e e s s e ==
M [T r gt P [t LR
b) b4 =
e — 5 =cr
iz + f — £ te F= ==
3% _aan A —
g%gﬁgr“' e =Lt
] L S i R L) L e [o
o £ = ME oo EE g owop
0 4 —— _1Fq »\.;3-‘ S = 3% :_. :; t
P J F*F—W"r\-—:>f___/
e = hei] —
eSS = == ==
i 1 | | gn T &
T — T
B %: ﬁ“ = : ;
‘g T T P ‘?: u
9, % " e e . .y
Sl e
|E=" ~ = ==
= T — — s .

_images/score2.jpg
—

B = Fthe o = i
3 .2 @ f 3R wiF 3

T ——
- Tl 1 ¢ »

¥
poco riten.

0 4 —

rL=E ==

R i iard

PR ==t B

@J:E ZaE I - EP) ® S
3' A dim. L | e g e F
et HE oy

nav.xhtml

 Table of Contents

 		
 repytah

 		
 Why repytah

 		
 Installing from conda package-manager or from pip

 		
 Anaconda

 		
 PyPI

 		
 Install from pip or conda

 		
 PyPI

 		
 Anaconda

 		
 Source

 		
 Utilities

 		
 Transform

 		
 Assemble

 		
 Search

 		
 Function Pipeline

 		
 A Quick Start to Use the Package repytah

 		
 To skip visualizing the middle steps and get the output directly, try the following code:

 		
 To visualize the middle steps, try the following code:

 		
 Example of Creating Aligned Hierarchies for a Mazurka Score

 		
 Step 0: Create the SDM

 		
 Importing data for structure analysis

 		
 Creating the SDM

 		
 Step 1: Threshold the SDM

 		
 Step 2: Find the diagonals present and store all pairs of repeats found in a list

 		
 Step 3: Find any diagonals in the thresholded matrix T that are contained in larger diagonals in T but not found in step 2, then group pairs of repeats

 		
 Step 4: Remove any repeated structure that has at least two repeats that overlap in time

 		
 Step 5: Find the essential structure components of the song and build the aligned hierarchies

 		
 Essential Structure Components

 		
 Creating the aligned hierarchies

 		
 Changelog

 		
 v0.1.0

 		
 Index

_static/minus.png

_static/plus.png

_images/assemble_vignette_11_1.png
Threshold Self-dissimilarity Matrix of the Ordering Essential Structure Components

_images/assemble_vignette_11_2.png
Repeated Ordered Sublists of the Essential Structure Components

_images/assemble_vignette_11_0.png
Essential Structure Components

50 75 150 s

_images/example_vignette_12_0.png
50 1

100 A

150 A

200 1

250 1

300 1

AN

AN

/
S

50

100

150

200 250

300

_images/example_vignette_16_0.png
50 1

100 A

150 A

200 1

250 1

300 1

AN

AN

/
S

50

100

150

200 250

300

_images/assemble_vignette_11_3.png
Repeated Ordered Sublists of the Essential Structure Components with Leading Index Highlighted

_images/assemble_vignette_11_4.png
Complete Aligned Hierarchies

50 75 150 s

_images/example_vignette_20_0.png
Essential Structure Components

w=4,a=1-"
w=10,a=11
W=22’a=1-. . . .
w=36,a=11

150 200 250 300

_static/file.png

_images/example_vignette_20_1.png
VCENOUPWNHO

Threshold Self-dissimilarity Matrix of the Ordering Essential Structure Components

01234567 8 9101112131415161718192021222324252627282930313233343536373839

_images/example_vignette_20_2.png
Repeated Ordered Sublists of the Essential Structure Components

HAMSNON 0D —HNMTHNON O OHNMSFNON 0N HNM NN O HNMSHNON O OHNMFLNON0 O
I

A AN NN NN NN NN MM MMM S S S S S FARNNANNINC G O O OGO OO
L T T (T (T T (T
23ZTTIIITIIIIIIIZZIIZZTIZIZTIIZTIIZIZIIIZIZIIIZIZIZIZIZZZIZIZZZZ

0123456 7 8 9101112131415161718192021222324252627282930313233343536373839

_images/example_vignette_6_1.png
Self-Dissimilarity Matrix

50 1

100 4

150 1

200 1\

250 1

300 4

0 50 100 150 200 250 300

_images/example_vignette_8_1.png
Thresholded Matrix

50 1

100 A

150 A

200 1

250 1

300 1

\\
AN

NN
\\

0 50 100 150

200

250

300

_images/example_vignette_20_3.png
Repeated Ordered Sublists of the Essential Structure Components with Leading Index Highlighted

HN M TN O~ ®© 0 H N M SN O~ ® 0 N M SN 00 H (MO0 (MO~ ©0 WM oo
wnn LI (1 1
© © T © T ©
A AT A AN NNNNNNNN i MM ST FU 01510101016 1516 6 6 6666 666
LU L (| (1
2222222322333 2232333322223553323223523222%28253233222223333%2

0123456 7 8 9101112131415161718192021222324252627282930313233343536373839

_images/example_vignette_20_4.png
Complete Aligned Hierarchies

R I R R R R S T R R T R R T R R T R R T R SR T R SR TR T TR R T SR YR)
N =

1
1
1
1
2
2
2
3
3
4,
0.
1
2
3
3
4
2
3
3
4
4,
5,
5,
6.
3,
4
5,
5,
6.
6.
6.
6.
7
7
7
8,
8,
9,
8,
9,

w
w
w
w
w
w
w
w
w
w

[l
gaawwwwwwwwwwwwwwNNNNNNNNHHHHHH

fEssssssEgsssssgsEgssssssssgsesEs8:¢8
I

=49, a

=49, a
w =50, a
w =159, a
w =60, a
w =61, a
w =62, a
w=70,a
w=71,a
w=71,a
w=72a
w=72a
w=72a
w=72a
w=72a
w=72a

300

_images/find_all_repeats3.png

_images/find_initial_repeats.png
G+
I (Qi—j+k—1)
(2i—j+k) (i+k—1)

|
|
£ 3

Joo@i-ie :
(2i=1) (F+E-1)

(i+k) (G+k-1)
Overlapping incidences with left (blue), middle (black), right (red) Segments

_images/find_all_repeats1.png

_images/find_all_repeats2.png

_images/quick_start_10_0.png
Thresholded Matrix

201

40 1

60

80 1

100 A

120 1

140 1

™

AN

™

25

50

75

100

125

_images/quick_start_14_0.png
Essential Structure Components

w=10,a=1-

w=13,a=1"

60 80 100 140

_images/function_pipeline.jpg
example.py

| --> create_sdm

I ->ﬁnd _initial_repeats
| -> stretch_diags

'">‘

|
1 -> add_annotations
| | > __find_song_pattern
| > remove_overlaps

| | —>_create_anno_remove_overlaps
|

|

|

|-

| 1 ->reconstruct_full_block
| | ->add_annotations
| —> __separate_anno_markers

- remove,overlaps
| > __create_anno_remove_overlaps
| | > reconstruct_full_block
| | ->add_annotations
| > __separate_anno_markers

| > reconstruct_full_block

_images/quick_start_14_3.png
Repeated Ordered Sublists of the Essential Structure Components with Leading Index Highlighted

_images/quick_start_14_4.png
Complete Aligned Hierarchies

w=10,a

w=11,a

w=13a

w=13a

w=14,a

w=23a

w=24,a

w=24,a

w=25a

w=26,a

w=27a

60 80 100 120 140

_images/quick_start_14_1.png
124

Threshold Self-dissimilarity Matrix of the Ordering Essential Structure Components

_images/quick_start_14_2.png
=1

=2

=3

=4

Repeated Ordered Sublists of the Essential Structure Components

At

_images/quick_start_5_2.png
=1

=2

=3

=4

Repeated Ordered Sublists of the Essential Structure Components

At

_images/quick_start_5_0.png
Essential Structure Components

w=10,a=1-

w=13,a=1"

60 80 100 140

_images/quick_start_5_1.png
124

Threshold Self-dissimilarity Matrix of the Ordering Essential Structure Components

